48 research outputs found

    Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Get PDF
    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application

    Effect of diameter and plant spacing on growth of Acrocarpus fraxinifolius under mid hill conditions of Himachal Pradesh

    Get PDF
    The data were collected from randomly selected trees at three sites with plant spacing, viz. 1.5m Γ—1.5m, 1.0m Γ— 3.5m and 3.0m Γ— 3.0m (namely S-I, II and III, respectively) of Acrocarpus fraxinifolius (20 years old) in mid hill conditions of Himachal Pradesh. The effect of plant spacing and diameter class on growth characteristics, viz. diameter at breast height (dbh), tree height, bole height, form factor, basal area, stem volume and crown parameters was assessed. Stem volume was positively and highly correlated with all growth parameters and showed highest correlation (0.95) with dbh. The tree height, bole height, basal area, stem volume, crown height, crown width and crown area increased significantly with increase in diameter as well as with spacing. Study regarding fiber length and specific gravity also contributed to growth behaviour of pink cedar at different spacing, where, specific gravity of wood showed an erratic behaviour with slight variation from 0.66 to 0.88, while stem and branch fiber length increased (1.05 to 1.11mm and 0.78 to 0.95mm, respectively) with increasing plant spacing. The overall growth performance of the species was best at 3m Γ— 3m spacing

    A Metasystem of Framework Model Organisms to Study Emergence of New Host-Microbe Adaptations

    Get PDF
    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such β€œmaladaptations”. The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment

    Reusable surface confined semi-conducting metal-TCNQ and metal-TCNQF4 catalysts for electron transfer reactions

    No full text
    The synthesis of organic semiconducting materials based on silver and copper-TCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and their fluorinated analogues has received a significant amount of attention due to their potential use in organic electronic applications. However, there is a scarcity in the identification of different applications for which these interesting materials may be suitable candidates. In this work, we address this by investigating the catalytic properties of such materials for the electron transfer reaction between ferricyanide and thiosulphate ions in aqueous solution, which to date has been almost solely limited to metallic nanomaterials. Significantly it was found that all the materials investigated, namely CuTCNQ, AgTCNQ, CuTCNQF4 and AgTCNQF4, were catalytically active and, interestingly, the fluorinated analogues were superior. AgTCNQF4 demonstrated the highest activity and was tested for its stability and re-usability for up to 50 cycles without degradation in performance. The catalytic reaction was monitored via UV-vis spectroscopy and open circuit potential versus time measurements, as well as an investigation of the transport properties of the films via electrochemical impedance spectroscopy. It is suggested that morphology and bulk conductivity are not the limiting factors, but rather the balance between the accumulated surface charge from electron injection via thiosulphate ions on the catalyst surface and transfer to the ferricyanide ions which controls the reaction rate. The facile fabrication of re-usable surface confined organic materials that are catalytically active may have important uses for many more electron transfer reactions

    Electrochemical formation of porous copper 7, 7, 8, 8-tetracyanoquinodimethane and copper 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane honeycomb surfaces with superhydrophobic properties

    No full text
    The electrochemical formation of highly porous CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and CuTCNQF4 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) materials was undertaken via the spontaneous redox reaction between a porous copper template, created using a hydrogen bubbling template technique, and an acetonitrile solution containing TCNQ or TCNQF4. It was found that activation of the surface via vigorous hydrogen evolution that occurs during porous copper deposition and TCNQ mass transport being hindered through the porous network of the copper template influenced the growth of CuTCNQ and CuTCNQF4. This approach resulted in the fabrication of a honeycomb layered type structure where the internal walls consist of very fine crystalline needles or spikes. This combination of microscopic and nanoscopic roughness was found to be extremely beneficial for anti-wetting properties where superhydrophobic materials with contact angles as high as 177Β° were created. Given that CuTCNQ and CuTCNQF4 have shown potential as molecular based electronic materials in the area of switching and field emission, the creation of a surface that is moisture resistant may be of applied interest

    Prevalence and epidemiology of Salmonella enterica serovar Gallinarum from poultry in some parts of Haryana, India

    No full text
    Aim: The present study was investigated to ascertain the epidemiological status of fowl typhoid (FT) in broilers in some parts of Haryana during January 2011 to December 2013. Materials and Methods: To elucidate the epidemiological status of FT in broiler chickens for the 3 years (2011-2013) and to study the prevalence of various Salmonella serovars in poultry on the basis of culture characteristics, biochemical features, serotyping, and their antibiogram profile from some parts of Haryana (India). Results: A total of 309 outbreaks of FT were recorded in chickens during this period. Overall percent morbidity, mortality, case-fatality rate (CFR) in broiler chicks due to FT during this period was 9.45, 6.77, and 71.55. The yearly observations were divided into quarters A (January-March), B (April-June), C (July-September) and D (October-December). Maximum number of outbreaks - 106 (34.3%) was recorded in quarter D followed by quarters B - 84 (27.3%), C - 64 (20.7%), and A - 55 (17.7%). Salmonella isolates (253) were recovered from disease outbreaks in broilers from different parts of Haryana. Typical morphology and colony characters on MacConkeys Lactose Agar and Brilliant Green agar, biochemical reactions, serotyping along with antibiogram profiles were able to group these isolates into 3 groups namely Salmonella Gallinarum (183), Salmonella Enteritidis (41) and Salmonella Typhimurium (29). The antibiogram pattern of 183 isolates of S. Gallinarum revealed that most of the isolates were sensitive to gentamicin (76%) followed by amikacin (72%), kanamycin (71%). Conclusion: FT is prevalent in commercial broiler flocks in different parts of Haryana and is responsible for considerably high morbidity and mortality in affected flocks. Isolation of S. Gallinarum (9, 12:183) from FT cases suggest it to be the primary pathogen, however, isolation of S. Typhimurium and S. Enteritidis from these cases is a major concern. The detection of S. Enteritidis and S. Typhimurium from FT cases assumes significance from public health point of view
    corecore