205 research outputs found

    Homocysteine and Hypertension in Diabetes: Does PPARγ Have a Regulatory Role?

    Get PDF
    Dysfunction of macro- and microvessels is a major cause of morbidity and mortality in patients with cardio-renovascular diseases such as atherosclerosis, hypertension, and diabetes. Renal failure and impairment of renal function due to vasoconstriction of the glomerular arteriole in diabetic nephropathy leads to renal volume retention and increase in plasma homocysteine level. Homocysteine, which is a nonprotein amino acid, at elevated levels is an independent cardio-renovascular risk factor. Homocysteine induces oxidative injury of vascular endothelial cells, involved in matrix remodeling through modulation of the matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) axis, and increased formation and accumulation of extracellular matrix protein, such as collagen. In heart this leads to increased endothelial-myocyte uncoupling resulting in diastolic dysfunction and hypertension. In the kidney, increased matrix accumulation in the glomerulus causes glomerulosclerosis resulting in hypofiltration, increased renal volume retention, and hypertension. PPARγ agonist reduces tissue homocysteine levels and is reported to ameliorate homocysteine-induced deleterious vascular effects in diabetes. This review, in light of current information, focuses on the beneficial effects of PPARγ agonist in homocysteine-associated hypertension and vascular remodeling in diabetes

    Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation

    Get PDF
    Homocysteine has emerged as a novel independent marker of risk for the development of cardiovascular disease over the past three decades. Additionally, there is a graded mortality risk associated with an elevated fasting plasma total homocysteine (tHcy). Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are now considered to be a strong coronary heart disease (CHD) risk enhancer and a CHD risk equivalent respectively. Hyperhomocysteinemia (HHcy) in patients with MS and T2DM would be expected to share a similar prevalence to the general population of five to seven percent and of even greater importance is: Declining glomerular filtration and overt diabetic nephropathy is a major determinant of tHcy elevation in MS and T2DM. There are multiple metabolic toxicities resulting in an excess of reactive oxygen species associated with MS, T2DM, and the accelerated atherosclerosis (atheroscleropathy). HHcy is associated with an increased risk of cardiovascular disease, and its individual role and how it interacts with the other multiple toxicities are presented. The water-soluble B vitamins (especially folate and cobalamin-vitamin B(12)) have been shown to lower HHcy. The absence of the cystathionine beta synthase enzyme in human vascular cells contributes to the importance of a dual role of folic acid in lowering tHcy through remethylation, as well as, its action of being an electron and hydrogen donor to the essential cofactor tetrahydrobiopterin. This folate shuttle facilitates the important recoupling of the uncoupled endothelial nitric oxide synthase enzyme reaction and may restore the synthesis of the omnipotent endothelial nitric oxide to the vasculature

    Intimal redox stress: Accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy

    Get PDF
    Metabolic syndrome, insulin resistance, prediabetes, and overt type 2 diabetes mellitus are associated with an accelerated atherosclerosis (atheroscleropathy). This quartet is also associated with multiple metabolic toxicities resulting in the production of reactive oxygen species. The redox stress associated with these reactive oxygen species contribute to the development, progression, and the final fate of the arterial vessel wall in prediabetic and diabetic atheroscleropathy. The prevention of morbidity and mortality of these intersecting metabolic diseases can be approached through comprehensive global risk reduction

    Isolated low high density lipoprotein-cholesterol (HDL-C): implications of global risk reduction. Case report and systematic scientific review

    Get PDF
    BACKGROUND: The importance of low high-density lipoprotein cholesterol (HDL-C), elevated non HDL-C (as part of the metabolic syndrome, prediabetes, and type 2 diabetes mellitus), and an isolated low HDL-C is rapidly emerging. The antiatherosclerotic roles of reverse cholesterol transport and the pleiotropic antioxidant – anti-inflammatory mechanistic effects of HDL-C are undergoing rapid exponential growth. CASE PRESENTATION: In 1997 a 53-year-old Caucasian male presented with a lipoprotein profile of many years duration with an isolated low HDL-C and uric acid levels in the upper quintile of normal. He developed an acute myocardial infarction involving the right coronary artery and had percutaneous transluminal coronary angioplasty with stenting of this lesion. He also demonstrated a non-critical non-flow limiting lesion of the proximal left anterior descending coronary artery at the time of this evaluation. Following a program of global risk reduction this patient has done well over the past 7 years and remains free of any clinical signs and symptoms of atherosclerosis. His HDL-C and uric acid levels are currently in the normal physiological range. CONCLUSION: Low HDL-C and isolated low HDL-C constitute an important risk factor for atherosclerosis. Therapies that lead to a return to normal physiologic range of HDL-C may result in the delay of atherosclerotic progression

    Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle

    Get PDF
    BACKGROUND: The topical role of uric acid and its relation to cardiovascular disease, renal disease, and hypertension is rapidly evolving. Its important role both historically and currently in the clinical clustering phenomenon of the metabolic syndrome (MS), type 2 diabetes mellitus (T2DM), atheroscleropathy, and non-diabetic atherosclerosis is of great importance. RESULTS: Uric acid is a marker of risk and it remains controversial as to its importance as a risk factor (causative role). In this review we will attempt to justify its important role as one of the many risk factors in the development of accelerated atherosclerosis and discuss its importance of being one of the multiple injurious stimuli to the endothelium, the arterial vessel wall, and capillaries. The role of uric acid, oxidative – redox stress, reactive oxygen species, and decreased endothelial nitric oxide and endothelial dysfunction cannot be over emphasized. In the atherosclerotic prooxidative environmental milieu the original antioxidant properties of uric acid paradoxically becomes prooxidant, thus contributing to the oxidation of lipoproteins within atherosclerotic plaques, regardless of their origins in the MS, T2DM, accelerated atherosclerosis (atheroscleropathy), or non-diabetic vulnerable atherosclerotic plaques. In this milieu there exists an antioxidant – prooxidant urate redox shuttle. CONCLUSION: Elevations of uric acid > 4 mg/dl should be considered a "red flag" in those patients at risk for cardiovascular disease and should alert the clinician to strive to utilize a global risk reduction program in a team effort to reduce the complications of the atherogenic process resulting in the morbid – mortal outcomes of cardiovascular disease

    Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress.

    Get PDF
    BACKGROUND: Cardiovascular disease accounts for at least 85 percent of deaths for those patients with type 2 diabetes mellitus (T2DM). Additionally, 75 percent of these deaths are due to ischemic heart disease. HYPOTHESIS: Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. TESTING OF THE HYPOTHESIS: The vulnerable three arms of the eNOS reaction responsible for the generation of eNO is discussed in relation to the hypothesis: (1). The L-arginine substrate. (2). The eNOS enzyme. (3). The BH4 cofactor. IMPLICATIONS OF THE HYPOTHESIS: If we view T2DM as a vascular disease initially with a later manifestation of hyperglycemia, we may be able to better understand and modify the multiple toxicities associated with insulin resistance, metabolic syndrome, prediabetes, overt T2DM, and accelerated atherosclerosis (atheroscleropathy). The importance of endothelial nitric oxide synthase, endothelial nitric oxide, tetrahydrobiopterin (BH4), L-arginine, and redox stress are discussed in relation to endothelial cell dysfunction and the development and progression of atheroscleropathy and T2DM. In addition to the standard therapies to restore endothelial cell dysfunction and stabilization of vulnerable atherosclerotic plaques, this article will discuss the importance of folic acid (5MTHF) supplementation in this complex devastating disease process. Atheroscleropathy and hyperglycemia could be early and late manifestations, respectively, in the natural progressive history of T2DM

    Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury

    Get PDF
    Fibrinogen (Fg) is one of the biomarkers of inflammation and a high risk factor for many cardiovascular and cerebrovascular diseases. Elevated levels of Fg (hyperfibrinogenemia, HFg) are also associated with traumatic brain injury (TBI). HFg in blood alters vascular reactivity and compromises integrity of endothelial cell layer that ultimately can result in extravasation of Fg and other plasma proteins. Proteins deposited in extravascular space may form plaques which can lead to neurodegeneration. Among these plasma proteins are amyloid beta (Aβ) and/or cellular prion protein (PrPC) that can form degradation resistant complexes with Fg and are known to be involved in memory impairment. The purpose of this chapter is to propose and discuss some possible mechanisms involved in HFg-mediated cerebrovascular dysfunction leading to neuronal degeneration during TBI

    Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure

    Get PDF
    Background: We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods: To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results: Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls

    Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperhomocysteinemia (HHcy) and hyperglycemia cause diabetic cardiomyopathy by inducing oxidative stress and attenuating peroxisome proliferator- activated receptor (PPAR) gamma. However, their synergistic contribution is not clear.</p> <p>Methods</p> <p>Diabetic Akita (Ins2+/-) and hyperhomocysteinemic cystathionine beta synthase mutant (CBS+/-) were used for M-mode echocardiography at the age of four and twenty four weeks. The cardiac rings from WT, Akita and hybrid (Ins2+/-/CBS+/-) of Akita and CBS+/- were treated with different doses of acetylcholine (an endothelial dependent vasodilator). High performance liquid chromatography (HPLC) was performed for determining plasma homocysteine (Hcy) level in the above groups. Akita was treated with ciglitazone (CZ) - a PPAR gamma agonist and tempol-an anti-oxidant, separately and their effects on cardiac remodeling were assessed.</p> <p>Results</p> <p>At twenty four week, Akita mice were hyperglycemic and HHcy. They have increased end diastolic diameter (EDD). In their heart PPAR gamma, tissue inhibitor of metalloproteinase-4 (TIMP-4) and anti-oxidant thioredoxin were attenuated whereas matrix metalloproteinase (MMP)-9, TIMP-3 and NADPH oxidase 4 (NOX4) were induced. Interestingly, they showed synergism between HHcy and hyperglycemia for endothelial-myocyte (E-M) uncoupling. Additionally, treatment with CZ alleviated MMP-9 activity and fibrosis, and improved EDD. On the other hand, treatment with tempol reversed cardiac remodeling in part by restoring the expressions of TIMP-3,-4, thioredoxin and MMP-9.</p> <p>Conclusions</p> <p>Endogenous homocysteine exacerbates diabetic cardiomyopathy by attenuating PPAR gamma and inducing E-M uncoupling leading to diastolic dysfunction. PPAR gamma agonist and tempol mitigates oxidative stress and ameliorates diastolic dysfunction in diabetes.</p
    corecore