654 research outputs found

    The Role of the Teacher in the Interdisciplinary Team

    Get PDF
    Describes the author\u27s impression that teachers are inadequately prepared to assume leadership roles in clinical settings, especially as members of interdisciplinary teams

    A Review by Jason Suratt of Professing to Learn: Creating Tenured Lives and Careers in the American Research University, by Anna Neumann

    Get PDF
    In her book, Professing to Learn: Creating Tenured Lives and Careers in the American Research University, Anna Neumann presents a valid case for the importance of investigating the types of learning and work performed by professors following their promotion and tenure. She argues there are popular misconceptions regarding scholarly learning and the amount of work carried out by professors at this point in their careers. These misconceptions are pervasive not only among the general public but also among academics. To that end, she draws attention to the potential advantages this research has for professors who are about to embark upon similar paths. Additionally, Neumann points out that there is very little existing research on this topic, and explains that this project will help to fill that gap in the scholarly literature

    Parisienne

    Get PDF
    Gift of Dr. Mary Jane Esplen.Piano vocal [instrumentation]Tell me pretty maiden would you like to take a [first line]Parisienne (oh! I love it so) [first line of refrain]C [key]Moderato [tempo]Popular song [form/genre]Couple dancing ; Valeska Suratt (photograph) [illustration]Publisher's advertisement on back cover [note

    Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis

    Get PDF
    Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF — serum concentrations of which rise under inflammatory conditions — rapidly increased Bcl3 transcript accumulation in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50–dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in regulating emergency granulopoiesis and suggest that targeting the differentiation of myeloid progenitors may be a therapeutic strategy for preventing inflammatory lung injury

    Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    Get PDF
    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans

    Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics

    Full text link
    © 2019 Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons

    Sleep patterns and school performance of Korean adolescents assessed using a Korean version of the pediatric daytime sleepiness scale

    Get PDF
    PurposeKorean adolescents have severe nighttime sleep deprivation and daytime sleepiness because of their competitive educational environment. However, daytime sleep patterns and sleepiness have never been studied using age-specific methods, such as the pediatric daytime sleepiness scale (PDSS). We surveyed the daytime sleepiness of Korean adolescents using a Korean translation of the PDSS.MethodsWe distributed the 27-item questionnaire, including the PDSS and questions related to sleep pattern, sleep satisfaction, and emotional state, to 3,370 students in grades 5-12.ResultsThe amount of nighttime sleep decreased significantly with increasing age. During weekday nights, 5-6th graders slept for 7.95±1.05 h, 7-9th graders for 7.57±1.05 h, and 10-12th graders for 5.78±1.13 h. However, the total amounts of combined daytime and nighttime sleep during weekdays were somewhat greater, 8.15±1.12 h for 5-6th graders, 8.17±1.20 h for 7-9th graders, and 6.87±1.40 h for 10-12th graders. PDSS scores increased with age, 11.89±5.56 for 5-6th graders, 16.57±5.57 for 7-9th graders, and 17.71±5.24 for 10-12th graders. Higher PDSS scores were positively correlated with poor school performance and emotional instability.ConclusionKorean teenagers sleep to an unusual extent during the day because of nighttime sleep deprivation. This negatively affects school performance and emotional stability. A Korean translation of the PDSS was effective in evaluating the severity of daytime sleepiness and assessing the emotional state and school performance of Korean teenagers

    Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Get PDF
    BACKGROUND: Bone marrow -derived cells (BMDCs) can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH) remains unknown. OBJECTIVES: We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. METHODS: Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp) to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal) to deplete mature cells and to allow proliferation of progenitor cells. RESULTS: BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01), right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03), and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05), compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. CONCLUSION: These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
    • …
    corecore