824 research outputs found
Recommended from our members
Primordial germ cell specification: a context-dependent cellular differentiation event [corrected].
During embryonic development, the foundation of the germline is laid by the specification of primordial germ cells (PGCs) from the postimplantation epiblast via bone morphogenetic protein (BMP) and WNT signalling. While the majority of epiblast cells undergo differentiation towards somatic cell lineages, PGCs initiate a unique cellular programme driven by the cooperation of the transcription factors BLIMP1, PRDM14 and AP2γ. These factors synergistically suppress the ongoing somatic differentiation and drive the re-expression of pluripotency and germ cell-specific genes accompanied by global epigenetic changes. However, an unresolved question is how postimplantation epiblast cells acquire the developmental competence for the PGC fate downstream of BMP/WNT signalling. One emerging concept is that transcriptional enhancers might play a central role in the establishment of developmental competence and the execution of cell fate determination. Here, we discuss recent advances on the specification and reprogramming of PGCs thereby highlighting the concept of enhancer function.U.G. is supported by a Marie Curie Intra-European
fellowship. E.M. is supported by the Icelandic Research Fund.
M.A.S. is supported by the Wellcome Trust (WT096738).This is the final version. It was first published by Royal Society Publishing at http://rstb.royalsocietypublishing.org/content/369/1657/2013054
Conserved features of non-primate bilaminar disc embryos and the germline.
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells
Recommended from our members
The unfolding body plan of primate embryos in culture.
Improved culture of non-human primate embryos reveals the establishment of the crucial framework for subsequent development of bodily tissues and the germline in fetuses, bringing us closer to comprehending the elusive development of early human embryos
Recommended from our members
ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage.
BACKGROUND: Pluripotency, the capacity for indefinite self-renewal and differentiation into diverse cell types is a unique state exhibited by embryonic stem (ES) cells. Transcriptional regulators, such as Oct4, are critical for pluripotency, but the role of epigenetic modifiers remains to be fully elucidated. RESULTS: Here, we show that ERG-associated protein with SET domain (ESET), a histone methyltransferase enzyme, maintains pluripotency through repression of Cdx2, a key trophectoderm determinant, by histone H3 lysine 9 trimethylation (H3K9me3) of the promoter region. Notably, this repression is mediated through the synergistic function of small ubiquitin-related modifier (SUMO)ylated ESET and Oct4. ESET localises to the promyelocytic leukaemia (PML) nuclear bodies and is SUMOylated in ES cells. Interaction of ESET with Oct4 depends on a SUMO-interacting motif (SIM) in Oct4, which is critical for the repression of Cdx2. CONCLUSION: Loss of ESET or Oct4 results in strikingly similar phenotypes both in ES cells with their differentiation into trophectoderm cells, and in early embryos where there is a failure of development of the pluripotent inner cell mass (ICM) of blastocysts. We propose that SUMOylated ESET-Oct4 complex is critical for both the initiation and maintenance of pluripotency through repression of differentiation, particularly of the trophectoderm lineage by epigenetic silencing of Cdx2.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis.
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro
The Relationship between Parenting Style and Social-Emotional Development of Early Childhood at RA Al-Maunah Gebang Anom Semarang
The main problem of early childhood learning is social-emotional development. This learning becomes the basis for other intelligence. The purpose of this study was to determine the relationship between parenting parents with emotional social development in early childhood. The researcher's approach is quantitative using a cross sectional approach, which is observation in one time. Data collection uses parenting questionnaire and KMME. The data obtained can be important for normality and reliability testing. Normality test is done to find out whether the data used in the study has a normal distribution and the results of the reliability test for all research variables have a Cronbach alpha value of> 0.60 so that it can be said that the instruments in this study are reliable and feasible to use. The results of this study indicate the relationship of parenting parents with social emotional development in early childhood, the chi square results show that the value of the Chi-Square Test symptom is P = 0.01
Recommended from our members
Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors.
BACKGROUND: The extraembryonic tissues, visceral endoderm (VE) and extraembryonic ectoderm (ExE) are known to be important for the induction of primordial germ cells (PGCs) in mice via activation of the bone morphogenetic protein (BMP) signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells. RESULTS: We cultured embryonic day (E) 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25-E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo. CONCLUSION: We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …