61 research outputs found

    Universal relations to measure neutron star properties from targeted r-mode searches

    Full text link
    R-mode oscillations of rotating neutron stars(NS) are promising candidates for continuous gravitational wave (GW) observations. In our recent work(Ghosh et al. 2023), we derived universal relations of the NS parameters, compactness and dimensionless tidal deformability with the r-mode frequency. In this work, we investigate how these universal relations can be used to infer various NS intrinsic parameters following a successful detection of the r-modes. In particular, we show that for targeted r-mode searches, these universal relations along with the "I-Love-Q" relation can be used to estimate both the moment of inertia and the distance of the NS thus breaking the degeneracy of distance measurement for continuous gravitational wave(CGW) observations. We also discuss that with a prior knowledge of the distance of the NS from electromagnetic observations, these universal relations can also be used to constrain the dense matter equation of state (EOS) inside NS. We quantify the accuracy to which such measurements can be done using the Fisher information matrix for a broad range of possible, unknown parameters, for both the a-LIGO and Einstein Telescope (ET) sensitivities.Comment: 8 pages, 7 figures, Submitted to MNRA

    Constraining the equation of state of hybrid stars using recent information from multidisciplinary physics

    Full text link
    At the ultra-high densities existing in the core of neutron stars, it is expected that a phase transition from baryonic to deconfined quark matter may occur. Such a phase transition would affect the underlying equation of state (EoS) as well as the observable astrophysical properties of neutron stars. Comparison of EoS model predictions with astronomical data from multi-messenger signals then provides us an opportunity to probe the behaviour of dense matter. In this work, we restrict the allowed parameter space of EoS models in neutron stars for both nucleonic (relativistic mean field model) and quark matter (bag model) sectors by imposing state-of-the-art constraints from nuclear calculations, multi-messenger astrophysical data and perturbative QCD (pQCD). We systematically investigate the effect of each constraint on the parameter space of uncertainties using a cut-off filter scheme, as well as the correlations among the parameters and with neutron star astrophysical observables. Using the constraints, we obtain limits for maximum NS mass, maximum central density, as well as for NS radii and tidal deformability. Although pQCD constraints are only effective at very high densities, they significantly reduce the parameter space of the quark model. We also conclude that astrophysical data supports high values of the bag parameter B and disfavors the existence of a pure quark matter core in hybrid stars.Comment: 16 pages, 11 figures, 2 table

    g-mode Oscillations in Neutron Stars with Hyperons

    Full text link
    A common alternative to the standard assumption of nucleonic composition of matter in the interior of a neutron star is to include strange baryons, particularly hyperons. Any change in composition of the neutron star core has an effect on g-mode oscillations of neutron stars, through the compositional dependence of the equilibrium and adiabatic sound speeds. We study the core g-modes of a neutron star contaning hyperons, using a variety of relativistic mean field models of dense matter that satisfy observational constraints on global properties of neutron stars. Our selected models predict a sharp rise in the g-mode frequencies upon the onset of strange baryons. Should g-modes be observed in the near future, their frequency could be used to test the presence of hyperonic matter in the core of neutron stars.Comment: 17 pages, 7 figure

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Relativistic Correction to the r-mode Frequency in Light of Multimessenger Constraints

    No full text
    The r -mode oscillations of rotating neutron stars are promising candidates for continuous gravitational-wave (GW) observations. The r -mode frequencies for slowly rotating Newtonian stars are well known and independent of the equation of state (EOS), but for neutron stars several mechanisms can alter the r -mode frequency for which the relativistic correction is dominant and relevant for most of the neutron stars. The most sensitive searches for continuous GWs are those for known pulsars for which GW frequencies are in targeted narrow frequency bands of a few hertz. In this study, we investigate the effect of several state-of-the-art multimessenger constraints on the r -mode frequency for relativistic, slowly rotating, barotropic stars. Imposing these recent constraints on the EOS, we find that the r -mode frequency range is slightly higher than that from the previous study and the narrowband frequency range can increase by up to 25% for the most promising candidate PSR J0537−6910 depending on the range of compactness. We also derive universal relations between r -mode frequency and dimensionless tidal deformability that can be used to estimate the dynamical tide of the r -mode resonant excitation during the inspiral signal. These results can be used to construct the parameter space for r -mode searches in GW data and also constrain the nuclear EOS following a successful r -mode detection

    Imposing multi-physics constraints at different densities on the neutron Star Equation of State

    No full text
    Neutron star matter spans a wide range of densities, from that of nuclei at the surface to exceeding several times normal nuclear matter density in the core. While terrestrial experiments, such as nuclear or heavy-ion collision experiments, provide clues about the behaviour of dense nuclear matter, one must resort to theoretical models of neutron star matter to extrapolate to higher density and finite neutron/proton asymmetry relevant for neutron stars. In this work, we explore the parameter space within the framework of the Relativistic Mean Field model allowed by present uncertainties compatible with state-of-the-art experimental data. We apply a cut-off filter scheme to constrain the parameter space using multi-physics constraints at different density regimes: chiral effective field theory, nuclear and heavy-ion collision data as well as multi-messenger astrophysical observations of neutron stars. Using the results of the study, we investigate possible correlations between nuclear and astrophysical observables
    corecore