4 research outputs found

    Assessment of Carbon Substrate Catabolism Pattern and Functional Metabolic Pathway for Microbiota of Limestone Caves

    No full text
    Carbon utilization of bacterial communities is a key factor of the biomineralization process in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is associated with the availability of carbon sources in such an ecological niche. As cave environments promote oligotrophic (carbon source stress) situations, the present study investigated the variations of different carbon substrate utilization patterns of soil and rock microbial communities between outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlateâ„¢ assay and categorized their taxonomical structure and predicted functional metabolic pathways based on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by Biolog EcoPlateâ„¢ assay revealed that microbes from outside of the cave were metabolically active and had higher carbon source utilization rate than the microbial community inside the cave. 16S rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planctomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes were associated with inside-cave samples. Functional prediction showed bacterial communities both inside and outside of the cave were functionally involved in the metabolism of carbohydrates, amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information processing. However, the amino acid and carbohydrate metabolic pathways were predominantly linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and energy metabolism were associated with inside-cave samples. Overall, a positive correlation was observed between Biolog EcoPlateâ„¢ assay carbon utilization and the abundance of functional metabolic pathways in this study

    Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) in a Chicken Farm Environment

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is a dynamic and tenacious pathogenic bacterium which is prevalent in livestock farming environments. This study investigated the possibility of MRSA spread via bioaerosol transmission from an indoor chicken farm environment to outdoors downwind (up to 50 m). The concentration of total airborne bacteria colony formation units (CFUs) was decreased with increasing sampling distance ranging from 9.18 × 101 to 3.67 × 103 per air volume (m3). Among the 21 MRSA isolates, 15 were isolated from indoor chicken sheds and exposure square areas, whereas 6 were isolated from downwind bioaerosol samples. Molecular characterization revealed that all of them carried the staphylococcal cassette chromosome mec (SCCmec) VIII, and they were remarkably linked with the hospital-associated MRSA group. Spa typing analysis determined that all MRSA isolates belonged to spa type t002. Virulence analysis showed that 100% of total isolates possessed exfoliative toxin A (eta), whereas 38.09% and 23.80% strains carried exfoliative toxin B (etb) and enterotoxin A (entA). Additionally, all of these MRSA isolates carried multidrug resistance properties and showed their resistance against chloramphenicol, ciprofloxacin, clindamycin, tetracycline, and erythromycin. In addition, chi-squared statistical analysis displayed a significant distributional relationship of gene phenotypes between MRSA isolates from chicken farm indoor and downwind bioaerosol samples. The results of this study revealed that chicken farm indoor air might act as a hotspot of MRSA local community-level outbreak, wherein the short-distance dispersal of MRSA could be supported by bioaerosols

    Molecular and Anti-Microbial Resistance (AMR) Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) from Hospital and Long-Term Care Facilities (LTCF) Environment

    No full text
    To provide evidence of the cross-contamination of emerging pathogenic microbes in a local network between long-term care facilities (LTCFs) and hospitals, this study emphasizes the molecular typing, the prevalence of virulence genes, and the antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus. MRSA isolates were characterized from 246 samples collected from LTCFs, medical tubes of LTCF residents, and hospital environments of two cities, Chiayi and Changhua. Species identification, molecular characterization, and drug resistance analysis were performed. Hospital environments had a higher MRSA detection rate than that of LTCF environments, where moist samples are a hotspot of MRSA habitats, including tube samples from LTCF residents. All MRSA isolates in this study carried the exfoliative toxin eta gene (100%). The majority of MRSA isolates were resistant to erythromycin (76.7%), gentamicin (60%), and ciprofloxacin (55%). The percentage of multidrug-resistant MRSA isolates was approximately 50%. The enterobacterial repetitive intergenic consensus polymerase chain reaction results showed that 18 MRSA isolates belonged to a specific cluster. This implied that genetically similar isolates were spread between hospitals and LTCFs in Changhua city. This study highlights the threat to the health of LTCFs’ residents posed by hospital contact with MRSA

    Deciphering Bacterial Community Structure, Functional Prediction and Food Safety Assessment in Fermented Fruits Using Next-Generation 16S rRNA Amplicon Sequencing

    No full text
    Fermented fruits and vegetables play an important role in safeguarding food security world-wide. Recently, robust sequencing-based microbial community analysis platforms have improved microbial safety assessment. This study aimed to examine the composition of bacteria and evaluate the bacterial safety of fermented fruit products using high-throughput 16S-rRNA metagenomic analysis. The operational taxonomic unit-based taxonomic classification of DNA sequences revealed 53 bacterial genera. However, the amplicon sequencing variant (ASV)-based clustering revealed 43 classifiable bacterial genera. Taxonomic classifications revealed that the abundance of Sphingomonas, which was the predominant genus in the majority of tested samples, was more than 85–90% among the total identified bacterial community in most samples. Among these identified genera, 13 low abundance genera were potential opportunistic pathogens, including Acinetobacter, Bacillus, Staphylococcus, Clostridium, Klebsiella, Mycobacterium, Ochrobactrum, Chryseobacterium, Stenotrophomonas, and Streptococcus. Of these 13 genera, 13 major opportunistic pathogenic species were validated using polymerase chain reaction. The pathogens were not detected in the samples of different stages and the final products of fermentation, except in one sample from the first stage of fermentation in which S. aureus was detected. This finding was consistent with that of ASV-based taxonomic classification according to which S. aureus was detected only in the sample from the first stage of fermentation. However, S. aureus was not significantly correlated with the human disease pathways. These results indicated that fermentation is a reliable and safe process as pathogenic bacteria were not detected in the fermentation products. The hybrid method reported in this study can be used simultaneously to evaluate the bacterial diversity, their functional predictions and safety assessment of novel fermentation products. Additionally, this hybrid method does not involve the random detection of pathogens, which can markedly decrease the time of detection and food safety verification. Furthermore, this hybrid method can be used for the quality control of products and the identification of external contamination
    corecore