6 research outputs found

    Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF

    Get PDF
    Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings

    New record of nuclear DNA amounts of some Zingiberaceae species from North east India

    No full text
    Members of the family Zingiberaceae are important medicinal plants and have great economic significance. Some taxonomic issues are still pending within the family and the genome size estimates of many species are still very scarce. Therefore, studies concerning genome size can provide complementary data that may be useful to characterize the family on whole. Genome size estimate have been used to characterize four Northeast Indian taxa of the family Zingiberaceae occurring in the wild in addition to that of a sacred cultivated species. In this data article we have provided genome size estimates of four species based on flow cytometry for the first time. This data will be valuable for genomic and molecular authentication of these species for all future studies

    Genome Size Unaffected by Variation in Morphological Traits, Temperature, and Precipitation in Turnip

    No full text
    Genome size (GS) was proposed as proxy for gross phenotypic and environmental changes in plants. GS organismal complexity is an enigma in evolutionary biology. While studies pertaining to intraspecific GS variation are abundant, literatures reporting the adaptive significance of GS are largelymissing. During food shortage, Brassica rapa var. rapa (turnip) is used as food and fodder for sustaining the livelihood of residents in the Qinghai Tibetan Plateau (QTP), which is also known as “the roof of the world”. Thus, climatic extremities make this region a natural environment to test adaptive significance of GS variation in turnip landraces. Therefore, from the QTP and its adjacent regions (the Hengduanshan and the Himalayas), we investigated adaptive evolution of GS in turnip landraces. Tuber diameter of turnip landraces was found to be significantly correlated with most of the environmental factors. GS was also shown not to be associated with morphological traits, temperature, and precipitation. Moreover, principal component analyses based on the whole dataset trisected the landraces into three distinct populations based on landrace usage—Hengduanshan, QTP, and the Himalayas. Nonetheless, our cumulative dataset showed evidence of adaptation of turnip landrace to different environments throughnonassociated genomic and phenomic plasticity
    corecore