9 research outputs found

    āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ­āļšāđāļŦāđ‰āļ‡Parameters Affecting Particle Size Reduction of Tapioca Starch in Drying Process

    No full text
    āđƒāļ™āļ›āļĩ āļž.āļĻ. 2561 āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāļĄāļĩāļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļš 3.1 āļĨāđ‰āļēāļ™āļ•āļąāļ™ āļĄāļđāļĨāļ„āđˆāļē 1,037.0 āļĨāđ‰āļēāļ™āļ”āļ­āļĨāļĨāļēāļĢāđŒāļŠāļŦāļĢāļąāļāļŊ āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢ 1.0 āļĨāđ‰āļēāļ™āļ•āļąāļ™ āļĄāļđāļĨāļ„āđˆāļē 617.8 āļĨāđ‰āļēāļ™āļ”āļ­āļĨāļĨāļēāļĢāđŒāļŠāļŦāļĢāļąāļāļŊ āđāļĨāļ°āļ„āļēāļ”āļāļēāļĢāļ“āđŒāļĄāļđāļĨāļ„āđˆāļēāļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāļˆāļ°āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ—āļļāļāļ›āļĩ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļˆāļ°āļŠāđˆāļ§āļĒāđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄ āļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļ™āđ‰āļģāļŦāļ™āļąāļāļšāļĢāļĢāļˆāļļāļ”āđ‰āļ§āļĒāļ–āļļāļ‡āļšāļĢāļĢāļˆāļļāļ āļąāļ“āļ‘āđŒāļ‚āļ™āļēāļ”āđ€āļ—āđˆāļēāđ€āļ”āļīāļĄ āļ—āļģāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļ‚āļ™āļŠāđˆāļ‡āļ•āđˆāļ­āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āļ‹āļķāđˆāļ‡āļˆāļ°āļŠāđˆāļ§āļĒāļ›āļĢāļ°āļŦāļĒāļąāļ”āļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāđƒāļ™āļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāđ„āļ”āđ‰ āļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ„āļ·āļ­āļāļēāļĢāļĻāļķāļāļĐāļēāļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āđ‚āļ”āļĒāļ­āļ­āļāđāļšāļš āļŠāļĢāđ‰āļēāļ‡ āļĢāļ§āļĄāļ–āļķāļ‡āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđƒāļŠāđ‰āļ‡āļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļāļģāļŦāļ™āļ”āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ„āļŦāļĨāļ‚āļ­āļ‡āļĄāļ§āļĨāļ­āļēāļāļēāļĻāļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āđ„āļ§āđ‰āļ„āļ‡āļ—āļĩāđˆāđ€āļ—āđˆāļēāļāļąāļš 60,000 āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āđāļĨāļ°āļāļģāļŦāļ™āļ”āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļ 5 āļ›āļąāļˆāļˆāļąāļĒ āļ„āļ·āļ­ āļŠāļ™āļīāļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™ āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļĢāļđāļ›āđāļšāļšāđƒāļšāļžāļąāļ” āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļˆāļ°āļ–āļđāļāļ•āļīāļ”āļ•āļąāđ‰āļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ­āļšāđāļŦāđ‰āļ‡āđāļšāļšāļžāļēāļŦāļ°āļĨāļĄ āļ‹āļķāđˆāļ‡āđƒāļŠāđ‰āļ§āļąāļ•āļ–āļļāļ”āļīāļšāđ€āļ›āđ‡āļ™āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļš āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢ āđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ„āļ”āđ‰āļ§āļąāļ”āļ„āđˆāļēāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒāļĄāļīāđ€āļ•āļ­āļĢāđŒ āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄ āđāļĨāļ°āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļ„āļąāļ”āļ‚āļ™āļēāļ”āļ”āđ‰āļ§āļĒāļ•āļ°āđāļāļĢāļ‡āļĢāđˆāļ­āļ™āļĄāļēāļ•āļĢāļāļēāļ™ āđ‚āļ”āļĒāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđāļŸāļāļ—āļ­āđ€āļĢāļĩāļĒāļĨāđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļœāļĨāļ—āļēāļ‡āļŠāļ–āļīāļ•āļī āļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­āļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđƒāļšāļžāļąāļ” āļ•āļēāļĄāļ”āđ‰āļ§āļĒāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™āđ€āļ›āđ‡āļ™āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļ‹āļķāđˆāļ‡āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļšāļŦāļĨāļąāļ‡āļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļĄāļĩāļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡ D80 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 61.90 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 54.71 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆ D50 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 53.21 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 41.82 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļ 575.12 āđ€āļ›āđ‡āļ™ 720.54 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ āđƒāļ™āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢāļŦāļĨāļąāļ‡āļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļĄāļĩāļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡ D80 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 56.77 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 49.92 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆ D50 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 42.26 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 37.54 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļ575.14 āđ€āļ›āđ‡āļ™ 703.70 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļžāļšāļ§āđˆāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āļĢāļ­āļ‡āļĨāļ‡āļĄāļēāļ„āļ·āļ­āļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđƒāļšāļžāļąāļ” āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ€āļ›āđ‡āļ™āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļšāļĄāļĩāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ€āļžāļ·āđˆāļ­āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āđ€āļ—āđˆāļēāļāļąāļš 9.52–12.92 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒ.āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļ•āđˆāļ­āļ•āļąāļ™āđāļ›āđ‰āļ‡ āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢāļĄāļĩāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡ 9.22–12.52 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒ.āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļ•āđˆāļ­āļ•āļąāļ™āđāļ›āđ‰āļ‡In 2018, Thailand exported 3.1 million tons of native tapioca starch, worth 1,037.0 million US dollars. And modified tapioca starch, 1.0 million tons, worth 617.8 million US dollars. And forecast the export value will increase every year. Therefore, reducing the particle size of tapioca starch helps increase tapped bulk density. It can increase the weight with the same size packaging bag resulting in higher transportation volumes which will help save on export costs. The objective of this research was to determine the parameter that affects to a particle size reduction of tapioca starch. Involved with design, fabrication and installation on factory to produce tapioca starch. For the test method, the flow of air through with reducing machine is constant of 60,000 m3 h–1. Which are consisted of five parameters; type of tapioca starch, feed rate, moisture of material, type of blade and tip speed of blade. In addition, this machine was installed on drying process. The test material used as native tapioca starch and modified tapioca starch. The energy was measured by kilowatt-hour meter. A bulk density to analysis with tapped bulk density equipment and analysis of particle size with a sieve analyzer. This research was conducted under a factorial design, which is the most commonly used method for screening the primary and the combined effect of each factor. It was found that the strongest main factor influence a particle size reduction was the type of blade, followed by tip speed of blade, type of tapioca starch, the moisture of material and feed rate respectively. It was found that a particle size of native tapioca starch after through from reducing machine with flat blade type, particle size cut off on D80 were decrease from 61.90 micron to 54.71 micron and on D50 were decrease from 53.21 micron to 41.82 micron and the tapped bulk density increased from 575.12 to 720.54 kg m–3. And modified tapioca starch was found particle size cut off on D80 were decrease from 56.77 micron to 49.92 micron and on D50 were decrease from 42.26 micron to 37.54 micron and the tapped bulk density increased from 575.14 to 703.70 kg m–3. On the energy consumption was found that tip speed has to significant influence followed by type of blade, type of tapioca starch, feed rate and moisture of material respectively. And the energy index for native tapioca starch was 9.52–12.92 kWh ton–1 and modified tapioca starch was 9.22–12.52 kWh ton–1

    Finite Element Analysis of Contact Stress Distribution on Insert Conformity Design of Total Knee Arthroplasty

    No full text
    The tibial insert conformity is one of the essential parameters concerned with the contact stress distribution of biomechanics characteristics in total knee arthroplasty (TKA). This study aimed to evaluate the effect of tibial insert conformity design on contact stress distribution using Finite Element (FE) analysis. The three-dimensional (3D) FE model of the posterior stabilized type of TKA was analyzed according to the standard knee implant loading. The 3k factorial experimental design was performed for the response surface of different insert curvatures consisting of the curve, partial flat, and flat insert conformity in sagittal and coronal planes. According to the result, the coronal and sagittal plane conformity displayed the effect of the change on the contact stress, including the contact area for the flexion angle of the knee joint. The maximum contact stress increased while the contact area value decreased during the flexion angle of the knee joints raised. The changing insert conformity value in the sagittal plane displayed higher sensitivity to contact stress than the changing conformity in the coronal plane. The relationship between the contact stress and tibial insert conformity under knee flexion angle indicates highly regression suitable for the prediction. In addition, the FE simulation result was then verified by compared to mechanical testing using the Fujifilm technique. The result of FE analysis exhibited similar to that of the mechanical test. The study indicated that the different geometric designs of the insert conformity played a crucial role that influenced and relationship to the contact stress of TK

    The effect of screw insertion configuration of Sinus Tarsi plate on biomechanical performance using finite element analysis

    No full text
    Abstract Sinus Tarsi plates are used as implants for minimally invasive surgery of calcaneus bone fractures. This study evaluated the screw fixation patterns of Sinus Tarsi plates for optimal biomechanical performance. Six three-dimensional (3D) finite element models with different positional screws were evaluated for calcaneus fracture stabilization using Sinus Tarsi plates with 5, 6, and 7 holes. Walking stance conditions as heel strike, midstance, and push-off phases were used to compare loading. Results indicated that the equivalent (EQV) stress exhibited in the implant was higher than in the surrounding bone, with the highest value during the push-off phase. The maximum EQV stress or risk of failure decreased when an insertion screw was placed in the anterior bone using a 7-hole plate, and the most stable strain result at the fracture bone site was recorded for a Sinus Tarsi plate with 7 holes (TT 7-1). The screw insertion pattern and configuration of the Sinus Tarsi plate impacted the biomechanical performance of the calcaneal fracture

    The Influence of Weight Distribution on the Handling Characteristics of Intercity Bus under Steady State Vehicle Cornering Condition

    No full text
    The vehicle cornering behavior is an important performance in handling stability especially for the intercity bus. Accordingly, one of the significant parameters concerns the weight distribution which is affected by the center of gravity (CG). In this paper, the effect of weight distribution while varying the turning radius is compared and it should be expressed, and interpreted by understeer gradient which is influenced by the location of CG. The characteristic of intercity bus was modeled and evaluated using the multi-body dynamic analysis software. The analysis has been conducted under steady state cornering based on a total of three configurations, with front/rear axle weight in percent, as 40/60, 45/55, and 50/50.The results stated that the magnitude of weight distribution on front axle of bus in a range of 40% to 50% caused the incremental value of understeer gradient and it was also increased as three times in each turning radius since the difference lateral slip angles between front and rear are expanded

    Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur

    No full text
    This study evaluates the distal femur morphology of the Thai population using a three-dimensional (3D) measurement method, measuring the distance between the triangular point of the femoral 3D model. The 3D model of 360 Thai femoral obtained from 180 volunteers (90 males, 90 females; range 20–50 years, average 32.8 years) was created using reverse engineering techniques from computed tomography imaging data. Using the 3D identified landmark method, the morphometric parameters evaluated included transepicondylar axis length (TEA), mediolateral length (ML), anteroposterior width (AP), medial anteroposterior width (MAP), lateral anteroposterior width (LAP), medial condyle width (MCW), lateral condyle width (LCW), intercondylar notch width (WIN), intercondylar notch depth (DIN), medial posterior condyle height (MPC), lateral posterior condyle height (LPC), femoral aspect ratio (ML/AP), lateral femoral aspect ratio (ML/LAP), and medial femoral aspect ratio (ML/MAP). The measured data were summarized for the analysis of an average value and standard deviation. Statistical analysis was performed using the independent samples t-test, unequal variances t-test, and linear regression. A p-value less than 0.05 (<0.05) was regarded as statistically significant and indicates strong evidence of the hypothesis. Additionally, the K-means clustering analysis of Thai distal femoral to the optimum size of the prosthesis with the correlation between ML length and AP width was performed. The results found that the morphometric parameters of the Thai male distal femur were significantly different and higher than those of Thai females, except for the ratio of ML/AP and ML/MAP. Comparatively, there was a significant difference between the specific size of Thai distal femur and that of the Korean population, which was also smaller than that for Caucasians. In addition, there was a mismatch between the distal femoral component sizing of knee prosthesis and what is available and commonly used in Thailand. At least six sizes of ML and/or AP should be recommended for the reasonable design of distal femoral prosthesis for covering the anatomy of Thais. These data are useful for predicting the morphometric parameters in forensic anthropology and provide basic data for the design of knee prostheses suitable for the Thai population

    Optimal Conformity Design of Tibial Insert Component Based on ISO Standard Wear Test Using Finite Element Analysis and Surrogate Model

    No full text
    Total knee replacement is a standard surgical treatment used to treat osteoarthritis in the knee. The implant is complicated, requiring expensive designs and testing as well as a surgical intervention. This research proposes a technique concerning the optimal conformity design of the symmetric polyethylene tibial insert component for fixed-bearing total knee arthroplasty. The Latin Hypercube Sampling (LHS) design of the experiment was used to create 30 cases of the varied tibial insert conformity that influenced the total knee replacement wear volume. The combination of finite element analysis and a surrogate model was performed to predict wear volume according to the standard of ISO-14243:2014 wear test and to determine the optimal conformity. In the first step, the results could predict wear volume between 5.50 to 72.92 mm3/106 cycle. The Kriging method of a surrogate model has then created the increased design based on the efficient global optimization (EGO) method with improving data 10 design points. The result revealed that the optimum design of tibial insert conformity in a coronal and sagittal plane was 0.70 and 0.59, respectively, with a minimizing wear volume of 3.07 mm3/106 cycle. The verification results revealed that the area surface scrape and wear volume are similar to those predicted by the experiment. The wear behavior on the tibial insert surface was asymmetry of both sides. From this study it can be concluded that the optimal conformity design of the tibial insert component can be by using a finite element and surrogate model combined with the design of conformity to the minimized wear volume

    āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ•āđˆāļ­āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄInfluence of Melamine Formaldehyde Waste on Retardation of Gypsum Rehydration Reaction

    No full text
    āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāđ€āļ›āđ‡āļ™āļ‚āļĒāļ°āļžāļĨāļēāļŠāļ•āļīāļāļ›āļĢāļ°āđ€āļ āļ—āđ€āļ—āļ­āļĢāđŒāđ‚āļĄāđ€āļ‹āđ‡āļ•āļ•āļīāļ‡āļ—āļĩāđˆāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļāļĨāļąāļšāļĄāļēāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ”āđ‰āļ§āļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļ‚āļĒāļ°āļžāļĨāļēāļŠāļ•āļīāļāļ›āļĢāļ°āđ€āļ āļ—āđ€āļ—āļ­āļĢāđŒāđ‚āļĄāđ€āļ‹āđ‡āļ•āļ•āļīāļ‡āļĄāļĩāļāļēāļĢāļāļģāļˆāļąāļ”āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļāļąāļ‡āļāļĨāļš āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ§āļīāļ˜āļĩāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āļāļēāļĢāļĻāļķāļāļĐāļēāļ§āļąāļŠāļ”āļļāļŠāļģāļŦāļĢāļąāļšāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļāļēāļĢāļœāļĨāļīāļ•āđāļœāđˆāļ™āļĒāļīāļ›āļ‹āļąāļĄāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ•āļĢāļ‡āļ•āļēāļĄāļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™ āļĄāļĩāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļŠāļ™āļīāļ” āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļ™āļąāđ‰āļ™āļ„āļ·āļ­āļ§āļąāļŠāļ”āļļāļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ•āđˆāļ­āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļāļēāļĢāļœāļĨāļīāļ•āđāļœāđˆāļ™āļĒāļīāļ›āļ‹āļąāļĄ āļžāļĢāđ‰āļ­āļĄāļ—āļąāđ‰āļ‡āļĻāļķāļāļĐāļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒ āđ‚āļ”āļĒāđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāđāļšāļšāļœāļ‡āļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ” <200, 200–500, 500–1,000 āđāļĨāļ° 1,000–5,000 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļĢāđ‰āļ­āļĒāļĨāļ° 5, 10 āđāļĨāļ° 20 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒ āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļ—āļąāđ‰āļ‡āļ—āļĩāđˆāļœāļŠāļĄāđāļĨāļ°āļĒāļąāļ‡āđ„āļĄāđˆāļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ„āļ‡āļ—āļĩāđˆāđ€āļ—āđˆāļēāļāļąāļš 0.75 āļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĄāļšāļąāļ•āļīāļ•āđˆāļēāļ‡āđ† āļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļĨāļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļĒāļąāļ‡āļĻāļķāļāļĐāļēāļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ•āđ‰āļ™ āļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ›āļĨāļēāļĒ āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ”āļąāļ” āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ” āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļœāļīāļ§ āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģ āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļ—āļĩāđˆāļĄāļĩāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļĄāļĩāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ•āđ‰āļ™āđāļĨāļ°āļĢāļ°āļĒāļ°āļ›āļĨāļēāļĒāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļ‹āļķāđˆāļ‡āļĄāļĩāļŠāđˆāļ§āļ™āļŠāđˆāļ§āļĒāđƒāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļŠāļĄāļšāļąāļ•āļīāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļœāļīāļ§āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄāļ—āļĩāđˆāļ”āļĩāļ‚āļķāđ‰āļ™ āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āļ‚āļ­āļ‡āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ”āļąāļ”āđāļĨāļ°āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļœāđˆāļēāļ™āđ€āļāļ“āļ‘āđŒāļĄāļēāļ•āļĢāļāļēāļ™ UNE-EN 13276-1: 2009Melamine formaldehyde waste is thermosetting plastic waste which cannot be recycled with heat. Its disposal method is landfill which is not environmentally friendly. There are some materials for Gypsum board production including retarders. Retarder is one of the important additives that retards the gypsum rehydration reaction. This research studies the influence of melamine formaldehyde waste on this reaction and how to recycle it. The melamine formaldehyde waste powder was employed to produce gypsum specimen. The replacements were 5%, 10% and 20% by plaster weight with particle size less than 200, 200–500, 500–1,000 and 1,000–5,000 micrometers and constant ratio of water to plaster was 0.75. Physical and mechanical properties of gypsum specimen containing melamine formaldehyde waste powder were investigated on initial setting time, final setting time, density, flexural strength, compressive strength, surface hardness, water absorption and microstructure. The experimental results revealed that the initial setting time, final setting time, surface hardness and water absorption of the new composite material increased. Therefore, it created more retardation of gypsum rehydration reaction. The new composite had the flexural strength and compressive strength complied with the UNE-EN 13276-1: 2009 standard with the potential to save waste disposal cost

    Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm

    No full text
    Those with disabilities who have lost their legs must use a prosthesis to walk. However, traditional prostheses have the disadvantage of being unable to move and support the human gait because there are no mechanisms or algorithms to control them. This makes it difficult for the wearer to walk. To overcome this problem, we developed an insole device with a wearable sensor for real-time gait phase detection based on the kNN (k-nearest neighbor) algorithm for prosthetic control. The kNN algorithm is used with the raw data obtained from the pressure sensors in the insole to predict seven walking phases, i.e., stand, heel strike, foot flat, midstance, heel off, toe-off, and swing. As a result, the predictive decision in each gait cycle to control the ankle movement of the transtibial prosthesis improves with each walk. The results in this study can provide 81.43% accuracy for gait phase detection, and can control the transtibial prosthetic effectively at the maximum walking speed of 6 km/h. Moreover, this insole device is small, lightweight and unaffected by the physical factors of the wearer
    corecore