5 research outputs found

    MixONat, a Software for the Dereplication of Mixtures Based on 13 C NMR Spectroscopy

    No full text
    International audienceWhether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual timeconsuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13 C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13 C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a { 1 H}-13 C NMR spectrum optionally combined with DEPT-135 and 90 datato distinguish carbon types (i.e., CH 3 , CH 2 , CH, and C)as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 1
    corecore