2 research outputs found

    CCKAR is a biomarker for prognosis and asynchronous brain metastasis of non-small cell lung cancer

    Get PDF
    BackgroundNon-small cell lung cancer (NSCLC) is the most common histological type of lung cancer, and brain metastasis (BM) is the most lethal complication of NSCLC. The predictive biomarkers and risk factors of asynchronous BM are still unknown.Materials and methodsA total of 203 patients with NSCLC were enrolled into our cohort and followed up. The clinicopathological factors such as tumor size, T stage, lymphatic invasion, metastasis and asynchronous BM were investigated. CCKAR expression in NSCLC and resected BM was assessed by IHC, and CCKAR mRNAs in NSCLC and para-tumor tissues were estimated by qRT-PCR. The correlations between CCKAR expression, BM and other clinicopathological factors were assessed by chi-square test, and prognostic significance of CCKAR was estimated by univariate and multivariate analyses.ResultsCCKAR was highly expressed in NSCLC tissues compared with para-tumor tissues. CCKAR expression in NSCLC was significantly associated with asynchronous BM. The BM percentages for NSCLC patients with low and high CCKAR were surprisingly 5.2% and 66.6%, respectively. CCKAR expression and BM were unfavorable factors predicting unfavorable outcome of NSCLC. Moreover, CCKAR expression in NSCLC was an independent risk factor of asynchronous BM.ConclusionsCCKAR is a prognostic biomarker of NSCLC. CCKAR expression in NSCLC is positively associated with asynchronous BM, and is a risk factor of asynchronous BM from NSCLC

    GPBAR1 promotes proliferation and is related to poor prognosis of high-grade glioma via inducing MAFB expression

    No full text
    Background. Glioma is the most prevalent brain tumors with extremely poor prognosis, but the prognostic biomarkers of high-grade (grade III and IV) gliomas (HGG) are still insufficient. Materials and methods. In our study, we investigated the expression of GPBAR1 in HGG by qRT-PCR and immunohistochemistry (IHC), and evaluated the clinical significance of GPBAR1 with univariate and multivariate analyses. By retrieving the data from TCGA, we screened the genes significantly associated with GPBAR1, and identified the correlation between GPBAR1 and MAFB. By experiments in vitro, we showed the pivotal role of MAFB in GPBAR1-induced proliferation of HGG. Results. GPBAR1 expression in HGGs was significantly higher than that in normal brain tissues. GPBAR1 was an independent prognostic biomarker of HGG. GPBAR1 promoted the proliferation of HGG by inducing MAFB expression. MAFB was also a prognostic biomarker of HGG, and patients with coexpression of MAFB and GPBAR1 had worse prognosis. Conclusions. GPBAR1 promoted the proliferation of HGG by inducing MAFB expression. Both GPBAR1 and MAFB were prognostic biomarkers of HGG, and patients with co-expression of MAFB and GPBAR1 had worse prognosis than those with only GPBAR1 or MAFB expression
    corecore