476 research outputs found

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    High Self-Control Reduces Risk Preference: The Role of Connectivity Between Right Orbitofrontal Cortex and Right Anterior Cingulate Cortex

    Get PDF
    Risk preference, the preference for risky choices over safe alternatives, has a great impact on many fields, such as physical health, sexual safety and financial decision making. Ample behavioral research has attested that inadequate self-control can give rise to high risk preference. However, little is known about the neural substrates underlying the effect of self-control on risk preference. To address this issue, we combined voxel-based morphometry (VBM) with resting-state functional connectivity (RSFC) analyses to explore the neural basis underlying the effect of self-control on risk preference across two independent samples. In sample 1 (99 participants; 47 males; 20.37 ± 1.63 years), the behavioral results indicated that the scores of self-control were significantly and negatively correlated with risk preference (indexed by gambling rate). The VBM analyses demonstrated that the higher risk preference was correlated with smaller gray matter volumes in right orbitofrontal cortex (rOFC) and right posterior parietal cortex. In the independent sample 2 (80 participants; 33 males; 20.33 ± 1.83 years), the RSFC analyses ascertained that the functional connectivity of rOFC and right anterior cingulate cortex (rACC) was positively associated with risk preference. Furthermore, the mediation analysis identified that self-control mediated the impact of functional connectivity of rOFC-rACC on risk preference. These findings suggest the functional coupling between the rOFC and rACC might account for the association between self-control and risk preference. The present study extends our understanding on the relationship between self-control and risk preference, and reveals possible neural underpinnings underlying this association

    Cytoreductive surgery alone or combined with hyperthermic intraperitoneal chemotherapy (HIPEC) for pseudomyxoma peritonei

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: The aim of this work is to evaluate the efficacy of cytoreductive surgery alone versus cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy (HIPEC), on patient benefits, complications and short-term outcomes in patients with pseudomyxoma peritonei (PMP). \ua9 2018 The Cochrane Collaboration

    Mechanism and Prevention Technologies of Reservoir Gas Disaster in Abandoned Oil Well of Coal Mine

    Get PDF
    AbstractThe reservoir gas disaster has distinct characteristics and is a key factor that threatens the safe and green mining of coal mines in the costorage area of coal and petroleum resources. In order to solve the problem of prevention and control of reservoir gas disasters in coal mines, the characteristics of oil-bed gas disasters in abandoned oil wells in coal mines were analyzed, and the oil-bed gas disaster mechanism of abandoned oil wells without isolation coal pillars was revealed to study the scope of gas disasters around oil wells under the influence of production. The research shows that: (1) abandoned oil well reservoir gas disasters have the characteristics of high gas pressure, high concentration, large lateral influence area, wide vertical sweep range, and frequent disasters, which seriously threaten the safety and green mining of coal mines; (2) divide the reservoir gas disaster of abandoned oil wells into the high-pressure gas disaster in the well and the disaster in the surrounding oil-bed gas enrichment area; (3) according to the numerical simulation results that the maximum damage depth of the coal seam mining floor is 38.6 m and the seepage height of high-pressure oil-bed gas is 40 m, the safety factor k is introduced, and the reservoir gas sweeping range of the abandoned oil well is determined to be 95.4 m below the coal seam to the surface; (4) the comprehensive prevention and control technical scheme of oil-bed gas for controlling high-pressure oil-bed gas in wells by ground plugging and downhole injection and injection of diluent to control enriched areas was proposed, which successfully solved the problem of safe and efficient exploitation of Shuangma coal mine in Ningdong coalfield by abandoned oil wells. The research results provide effective solutions for the realization of green mining in many coal mines in the costorage area of coal and oil resources in China and have important application value for the prevention and control of dynamic disasters in the costorage area of resources

    The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application

    Get PDF
    LAG-3, a type of immune checkpoint receptor protein belonging to the immunoglobulin superfamily, is confirmed to be expressed on activated immune cells, mainly including activated T cells. LAG-3 can negatively regulate the function of T cells, exerting important effects on maintaining the homeostasis of the immune system under normal physiological conditions and promoting tumor cells immune escape in the tumor microenvironment. Given its important biological roles, LAG-3 has been regarded as a promising target for cancer immunotherapy. To date, many LAG-3 inhibitors have been reported, which can be divided into monoclonal antibody, double antibody, and small molecule drug, some of which have entered the clinical research stage. LAG-3 inhibitors can negatively regulate and suppress T cell proliferation and activation through combination with MHC II ligand. Besides, LAG-3 inhibitors can also affect T cell function via binding to Galectin-3 and LSECtin. In addition, LAG-3 inhibitors can prevent the FGL1-LAG-3 interaction, thereby enhancing the human body’s antitumor immune effect. In this review, we will describe the function of LAG-3 and summarize the latest LAG-3 inhibitors in the clinic for cancer therapy
    • …
    corecore