22 research outputs found

    Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer

    Get PDF
    AlxGa1-xN/GaN superlattice electron blocking layers (EBLs) with gradually decreasing Al composition toward the p-type GaN layer are introduced to GaInN-based high-power light-emitting diodes (LEDs). GaInN/GaN multiple quantum well LEDs with 5- and 9-period Al-composition-graded AlxGa1-xN/GaN EBL show comparable operating voltage, higher efficiency as well as less efficiency droop than LEDs having conventional bulk AlGaN EBL, which is attributed to the superlattice doping effect, enhanced hole injection into the active region, and reduced potential drop in the EBL by grading Al compositions. Simulation results reveal a reduction in electron leakage for the superlattice EBL, in agreement with experimental results. (C) 2013 AIP Publishing LLC.open1133sciescopu

    An interactive retrieval system for clinical trial studies with context-dependent protocol elements.

    Get PDF
    A well-defined protocol for a clinical trial guarantees a successful outcome report. When designing the protocol, most researchers refer to electronic databases and extract protocol elements using a keyword search. However, state-of-the-art database systems only offer text-based searches for user-entered keywords. In this study, we present a database system with a context-dependent and protocol-element-selection function for successfully designing a clinical trial protocol. To do this, we first introduce a database for a protocol retrieval system constructed from individual protocol data extracted from 184,634 clinical trials and 13,210 frame structures of clinical trial protocols. The database contains a variety of semantic information that allows the filtering of protocols during the search operation. Based on the database, we developed a web application called the clinical trial protocol database system (CLIPS; available at https://corus.kaist.edu/clips). This system enables an interactive search by utilizing protocol elements. To enable an interactive search for combinations of protocol elements, CLIPS provides optional next element selection according to the previous element in the form of a connected tree. The validation results show that our method achieves better performance than that of existing databases in predicting phenotypic features

    Polarization-engineered high efficiency GaInN light-emitting diodes optimized by genetic algorithm

    Get PDF
    A genetic algorithm is employed to find an optimum epitaxial structure of multiple quantum wells (MQWs) and electron-blocking layer (EBL) for a GaInN-based light-emitting diode (LED). The optimized LED is composed of locally Si-doped quantum barriers (QBs) in the MQWs and a quaternary heterostructured AlGaInN EBL having a polarization-induced electric field directed oppositely to that of a conventional AlGaN EBL. The optimized LED shows 15.6% higher internal quantum efficiency, 24.6% smaller efficiency droop, and 0.21 V lower forward voltage at 200 A/cm(2) comparing to the reference LED, which has fully Si-doped QB and 20-nm-thick Al0.19Ga0.81N EBL. We find that local Si doping near the QB/QW interface compensates the negative polarization-induced sheet charge at the interface and reduces electric field in the QWs, thereby enhancing electron-hole wave function overlap. In addition, the inverted polarization field in the quaternary EBL provides a high barrier for electrons but a low barrier for holes, resulting in enhanced electron-blocking and hole-injection characteristics.open1113sciescopu

    Precise Characterization of Genetic Interactions in Cancer via Molecular Network Refining Processes

    No full text
    Genetic interactions (GIs), such as the synthetic lethal interaction, are promising therapeutic targets in precision medicine. However, despite extensive efforts to characterize GIs by large-scale perturbation screening, considerable false positives have been reported in multiple studies. We propose a new computational approach for improved precision in GI identification by applying constraints that consider actual biological phenomena. In this study, GIs were characterized by assessing mutation, loss of function, and expression profiles in the DEPMAP database. The expression profiles were used to exclude loss-of-function data for nonexpressed genes in GI characterization. More importantly, the characterized GIs were refined based on Kyoto Encyclopedia of Genes and Genomes (KEGG) or protein–protein interaction (PPI) networks, under the assumption that genes genetically interacting with a certain mutated gene are adjacent in the networks. As a result, the initial GIs characterized with CRISPR and RNAi screenings were refined to 65 and 23 GIs based on KEGG networks and to 183 and 142 GIs based on PPI networks. The evaluation of refined GIs showed improved precision with respect to known synthetic lethal interactions. The refining process also yielded a synthetic partner network (SPN) for each mutated gene, which provides insight into therapeutic strategies for the mutated genes; specifically, exploring the SPN of mutated BRAF revealed ELAVL1 as a potential target for treating BRAF-mutated cancer, as validated by previous research. We expect that this work will advance cancer therapeutic research

    Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition

    No full text
    Few layer hexagonal boron nitride (h-BN) films were grown on 2-inch sapphire substrates by using metal-organic chemical vapor deposition (MOCVD) with two different carrier gases, hydrogen (H2) and nitrogen (N2). Structural, optical and electrical properties of the MOCVD-grown h-BN films were systematically investigated by various spectroscopic analyses and electrical conduction measurement. Based on the experimental findings including narrower X-ray photoelectron spectra, reduced intensity of the shoulder peaks in near edge X-ray absorption fine structure spectra, and decreased electrical conduction by more than three orders of magnitude when H2 carrier gas is employed, it was concluded that H2 has an advantage over N2 as the carrier gas for MOCVD growth of h-BN which is attributed to the healing of crystalline defects by etching and regrowth processes occurring under the pulsed source-injection mode

    An interactive retrieval system for clinical trial studies with context-dependent protocol elements.

    No full text
    A well-defined protocol for a clinical trial guarantees a successful outcome report. When designing the protocol, most researchers refer to electronic databases and extract protocol elements using a keyword search. However, state-of-the-art database systems only offer text-based searches for user-entered keywords. In this study, we present a database system with a context-dependent and protocol-element-selection function for successfully designing a clinical trial protocol. To do this, we first introduce a database for a protocol retrieval system constructed from individual protocol data extracted from 184,634 clinical trials and 13,210 frame structures of clinical trial protocols. The database contains a variety of semantic information that allows the filtering of protocols during the search operation. Based on the database, we developed a web application called the clinical trial protocol database system (CLIPS; available at https://corus.kaist.edu/clips). This system enables an interactive search by utilizing protocol elements. To enable an interactive search for combinations of protocol elements, CLIPS provides optional next element selection according to the previous element in the form of a connected tree. The validation results show that our method achieves better performance than that of existing databases in predicting phenotypic features

    Modulation of hole-injection in GaInN-light emitting triodes and its effect on carrier recombination behavior

    No full text
    The effects of the hole injection modulated by using a three-terminal GaInN-based light emitter, light-emitting triode (LET), on carrier recombination behavior and efficiency droop are investigated. It was found that the lateral electric field created by applying voltage bias between the two anodes effectively reduces efficiency droop as well as dynamic conductance of LETs. Detailed analyses of LETs under various operation conditions by APSYS simulations reveal that the asymmetry in carrier transport between electrons and holes is alleviated by promoted injection of hot holes over the potential barrier, increasing the hole concentration as well as the radiative recombination rate in the multiple quantum well active region

    Analysis of the reverse leakage current in AlGaN/GaN Schottky barrier diodes treated with fluorine plasma

    No full text
    The carrier transport mechanism of CF4 plasma-treated AlGaN/GaN Schottky barrier diodes (SBDs) under reverse bias is investigated. The reverse leakage current is reduced by similar to 2 orders of magnitude after the CF4 plasma treatment, but increases exponentially with increasing temperature, indicating that a thermally activated transport mechanism is involved. Based on the activation energy estimated from temperature-dependent current-voltage characteristics and the emission barrier height extracted from Frenkel-Poole emission model, it is suggested that the dominant carrier transport mechanism in the CF4 plasma treated SBDs is the Frenkel-Poole emission from fluorine-related deep-level states into the continuum states of dislocations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697684]open112621sciescopu
    corecore