7 research outputs found

    COMET: A Cross-Layer Optimized Optical Phase Change Main Memory Architecture

    Full text link
    Traditional DRAM-based main memory systems face several challenges with memory refresh overhead, high latency, and low throughput as the industry moves towards smaller DRAM cells. These issues have been exacerbated by the emergence of data-intensive applications in recent years. Memories based on phase change materials (PCMs) offer promising solutions to these challenges. PCMs store data in the material's phase, which can shift between amorphous and crystalline states when external thermal energy is supplied. This is often achieved using electrical pulses. Alternatively, using laser pulses and integration with silicon photonics offers a unique opportunity to realize high-bandwidth and low-latency photonic memories. Such a memory system may in turn open the possibility of realizing fully photonic computing systems. But to realize photonic memories, several challenges that are unique to the photonic domain such as crosstalk, optical loss management, and laser power overhead have to be addressed. In this work, we present COMET, the first cross-layer optimized optical main memory architecture that uses PCMs. In architecting COMET, we explore how to use silicon photonics and PCMs together to design a large-scale main memory system while addressing associated challenges. We explore challenges and propose solutions at the PCM cell, photonic memory circuit, and memory architecture levels. Based on our evaluations, COMET offers 7.1x better bandwidth, 15.1x lower EPB, and 3x lower latencies than the best-known prior work on photonic main memory architecture design

    GHOST: A Graph Neural Network Accelerator using Silicon Photonics

    Full text link
    Graph neural networks (GNNs) have emerged as a powerful approach for modelling and learning from graph-structured data. Multiple fields have since benefitted enormously from the capabilities of GNNs, such as recommendation systems, social network analysis, drug discovery, and robotics. However, accelerating and efficiently processing GNNs require a unique approach that goes beyond conventional artificial neural network accelerators, due to the substantial computational and memory requirements of GNNs. The slowdown of scaling in CMOS platforms also motivates a search for alternative implementation substrates. In this paper, we present GHOST, the first silicon-photonic hardware accelerator for GNNs. GHOST efficiently alleviates the costs associated with both vertex-centric and edge-centric operations. It implements separately the three main stages involved in running GNNs in the optical domain, allowing it to be used for the inference of various widely used GNN models and architectures, such as graph convolution networks and graph attention networks. Our simulation studies indicate that GHOST exhibits at least 10.2x better throughput and 3.8x better energy efficiency when compared to GPU, TPU, CPU and multiple state-of-the-art GNN hardware accelerators

    A Silicon Photonic Accelerator for Convolutional Neural Networks with Heterogeneous Quantization

    Full text link
    Parameter quantization in convolutional neural networks (CNNs) can help generate efficient models with lower memory footprint and computational complexity. But, homogeneous quantization can result in significant degradation of CNN model accuracy. In contrast, heterogeneous quantization represents a promising approach to realize compact, quantized models with higher inference accuracies. In this paper, we propose HQNNA, a CNN accelerator based on non-coherent silicon photonics that can accelerate both homogeneously quantized and heterogeneously quantized CNN models. Our analyses show that HQNNA achieves up to 73.8x better energy-per-bit and 159.5x better throughput-energy efficiency than state-of-the-art photonic CNN accelerators
    corecore