351 research outputs found

    Novel microsatellite DNA markers indicate strict parthenogenesis and few genotypes in the invasive willow sawfly Nematus oligospilus

    Get PDF
    Invasive organisms can have major impacts on the environment. Some invasive organisms are parthenogenetic in their invasive range and, therefore, exist as a number of asexual lineages (=clones). Determining the reproductive mode of invasive species has important implications for understanding the evolutionary genetics of such species, more especially, for management-relevant traits. The willow sawfly Nematus oligospilus Förster (Hymenoptera: Tenthredinidae) has been introduced unintentionally into several countries in the Southern Hemisphere where it has subsequently become invasive. To assess the population expansion, reproductive mode and host-plant relationships of this insect, microsatellite markers were developed and applied to natural populations sampled from the native and expanded range, along with sequencing of the cytochrome-oxidase I mitochondrial DNA (mtDNA) region. Other tenthredinids across a spectrum of taxonomic similarity to N. oligospilus and having a range of life strategies were also tested. Strict parthenogenesis was apparent within invasive N. oligospilus populations throughout the Southern Hemisphere, which comprised only a small number of genotypes. Sequences of mtDNA were identical for all individuals tested in the invasive range. The microsatellite markers were used successfully in several sawfly species, especially Nematus spp. and other genera of the Nematini tribe, with the degree of success inversely related to genetic divergence as estimated from COI sequences. The confirmation of parthenogenetic reproduction in N. oligospilus and the fact that it has a very limited pool of genotypes have important implications for understanding and managing this species and its biology, including in terms of phenotypic diversity, host relationships, implications for spread and future adaptive change. It would appear to be an excellent model study system for understanding evolution of invasive parthenogens that diverge without sexual reproduction and genetic recombinatio

    A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear.</p> <p>Results</p> <p>Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords.</p> <p>Conclusions</p> <p>Our results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.</p

    Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem

    Get PDF
    Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species\u27 range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems

    Secondary contact and admixture between independently invading populations of the Western corn rootworm, diabrotica virgifera virgifera in Europe

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed

    Massive Nest-Box Supplementation Boosts Fecundity, Survival and Even Immigration without Altering Mating and Reproductive Behaviour in a Rapidly Recovered Bird Population

    Get PDF
    Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970–1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery

    De novo genome assembly and annotation of Australia\u27s largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read

    Get PDF
    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to &sim;1.8 metres in length and live to age &ge;48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family

    Neighbours' Breeding Success and the Sex Ratio of Their Offspring Affect the Mate Preferences of Female Zebra Finches

    Get PDF
    Several hypotheses on divorce predict that monogamous pairs should split up more frequently after a breeding failure. Yet, deviations from the expected pattern “success-stay, failure-leave” have been reported in several species. One possible explanation for these deviations would be that individuals do not use only their own breeding performance (i.e., private information) but also that of others (i.e., public information) to decide whether or not to divorce. To test this hypothesis, we investigated the relative importance of private and public information for mate choice decisions in female zebra finches (Taeniopygia guttata).We manipulated the reproductive performance of breeding pairs and measured females' preferences for their mate and the neighbouring male first following pair formation and then seven weeks later when all females had laid eggs and the young were independent. Although all females reduced their preference for their mate after a breeding failure, the decrease was significant only when the neighbouring pair had reproduced successfully. Furthermore, there was no evidence that females biased the sex ratio of their offspring according to their mate's attractiveness. On the other hand, after reproduction, both successful and unsuccessful females increased their preferences for males who had produced a larger proportion of sons. Despite the fact that other mechanisms may have also contributed to our findings, we suggest that females changed their mate preferences based on the proportion of sons produced by successful males, because offspring sex ratio reflects the male's testosterone level at the moment of fertilization and hence is an indicator of his immune condition

    Lizards Cooperatively Tunnel to Construct a Long-Term Home for Family Members

    Get PDF
    Constructing a home to protect offspring while they mature is common in many vertebrate groups, but has not previously been reported in lizards. Here we provide the first example of a lizard that constructs a long-term home for family members, and a rare case of lizards behaving cooperatively. The great desert skink, Liopholis kintorei from Central Australia, constructs an elaborate multi-tunnelled burrow that can be continuously occupied for up to 7 years. Multiple generations participate in construction and maintenance of burrows. Parental assignments based on DNA analysis show that immature individuals within the same burrow were mostly full siblings, even when several age cohorts were present. Parents were always captured at burrows containing their offspring, and females were only detected breeding with the same male both within- and across seasons. Consequently, the individual investments made to construct or maintain a burrow system benefit their own offspring, or siblings, over several breeding seasons

    Weak Spatial and Temporal Population Genetic Structure in the Rosy Apple Aphid, Dysaphis plantaginea, in French Apple Orchards

    Get PDF
    We used eight microsatellite loci and a set of 20 aphid samples to investigate the spatial and temporal genetic structure of rosy apple aphid populations from 13 apple orchards situated in four different regions in France. Genetic variability was very similar between orchard populations and between winged populations collected before sexual reproduction in the fall and populations collected from colonies in the spring. A very small proportion of individuals (∼2%) had identical multilocus genotypes. Genetic differentiation between orchards was low (FST<0.026), with significant differentiation observed only between orchards from different regions, but no isolation by distance was detected. These results are consistent with high levels of genetic mixing in holocyclic Dysaphis plantaginae populations (host alternation through migration and sexual reproduction). These findings concerning the adaptation of the rosy apple aphid have potential consequences for pest management

    Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    Get PDF
    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity
    corecore