5 research outputs found
Author Correction: Magnetic configuration effects on the Wendelstein 7-X stellarator
\u3cp\u3eIn the version of this Article originally published, and in the associated Publisher Correction, the members of the W7-X Team were not included. All versions of the Article, and the Publisher Correction, have now been amended to include these team members.\u3c/p\u3
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
\u3cp\u3eFusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.\u3c/p\u3
Erratum to:magnetic configuration effects on the Wendelstein 7-X stellarator (Nature Physics, (2018), 14, 8, (855-860), 10.1038/s41567-018-0141-9)
\u3cp\u3eIn the version of this Article originally published, A. Mollén’s affiliation was incorrectly denoted as number 10; it should have been 1. Throughout the Article, some technical problems in typesetting meant that the tilde symbol above b and one instance of a superscript 2 were too high to be visible; see the correction notice for details. Finally, the citation to ref. \u3csup\u3e35\u3c/sup\u3e on page one of the Supplementary Information was incorrect; it should have been to ref. 36. These issues have now been corrected.\u3c/p\u3
Magnetic configuration effects on the Wendelstein 7-X stellarator
\u3cp\u3e
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τ
\u3csub\u3eE\u3c/sub\u3e
> 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.
\u3c/p\u3
Major results from the first plasma campaign of the Wendelstein 7-X stellarator
\u3cp\u3eAfter completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 10\u3csup\u3e19\u3c/sup\u3e m\u3csup\u3e-3\u3c/sup\u3e, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.\u3c/p\u3