4 research outputs found

    Emission Characteristics of Hazardous Air Pollutants from Medium-Duty Diesel Trucks Based on Driving Cycles

    No full text
    Studies on the characteristics of hazardous air pollutants (HAPs) in the emissions of medium-duty diesel trucks are significantly insufficient compared to those on heavy-duty trucks. This study investigated the characteristics of regulated pollutants and HAPs, such as volatile organic compounds (VOCs), aldehydes, and polycyclic aromatic hydrocarbons (PAHs), and estimated non-methane hydrocarbon (NMHC) speciation in the emissions of medium-duty diesel trucks. Ten medium-duty diesel trucks conforming to Euros 5 and 6 were tested for four various driving cycles (WLTC, NEDC, CVS-75, and NIER-9) using a chassis dynamometer. In an urban area such as Seoul, CO and NMHC emissions were increased because of its longer low-speed driving time. NOx emissions were the highest in the high-speed phase owing to the influence of thermal NOx. PM emissions were almost not emitted because of the DPF installation. Alkanes dominated non-methane volatile organic compound (NMVOC) emissions, 36–63% of which resulted from the low reaction of the diesel oxidation catalyst. Formaldehyde emissions were the highest for 35–53% among aldehydes irrespective of driving cycles. By sampling the particle-phase of PAHs, we detected benzo(k)fluoranthene and benzo(a)pyrene and estimated the concentrations of the gas-phase PAHs with models to obtain the total PAH concentrations. In the particle portion, benzo(k)fluoranthene and benzo(a)pyrene were over 69% and over 91%, respectively. The toxic equivalency quantities of benzo(k)fluoranthene and benzo(a)pyrene from NIER-9 (cold) for both Euro 5 and Euro 6 vehicles were more than five times higher than those of NIER (hot) and NEDC. In the case of NMHC speciation, formaldehyde emissions were the highest for 10–45% in all the driving cycles. Formaldehyde and benzene must be controlled in the emissions of medium-duty diesel trucks to reduce their health threats. The results of this study will aid in establishing a national emission inventory system for HAPs of mobile sources in Korea

    Characterization of Emission Factors Concerning Gasoline, LPG, and Diesel Vehicles via Transient Chassis-Dynamometer Tests

    No full text
    Gaseous emissions from vehicles contribute substantially to air pollution and climate change. Vehicular emissions also contain secondary pollutants produced via chemical reactions that occur between the emitted gases and atmospheric air. This study aims at understanding patterns concerning emission of regulated, greenhouse, and precursor gases, which demonstrate potential for secondary aerosol (SA) formation, from vehicles incorporating different engine technologies—multi-point injection (MPI) and gasoline direct injection (GDI)—and using different fuels—gasoline, liquefied petroleum gas (LPG), and diesel. Drive cycles from the National Institute of Environmental Research (NIER) were used in this study. Results obtained from drive cycle tests demonstrate a decline in aggregate gas emissions corresponding to an increase in average vehicle speed. CO2 accounts for more than 99% of aggregate gaseous emissions. In terms of concentration, CO and NH3 form predominantly non-CO2 emissions from gasoline and LPG vehicles, whereas nitrogen oxides (NOx) and non-methane hydrocarbons (NMHC) dominate diesel-vehicle emissions. A higher percentage of SO2 is emitted from diesel vehicles compared to their gasoline- and LPG-powered counterparts. EURO-5- and EURO-6-compliant vehicles equipped with diesel particulate filters (DPFs) tend to emit higher amounts of NO2 compared to EURO-3-compliant vehicles, which are not equipped with DPFs. Vehicles incorporating GDI tend to emit less CO2 compared to those incorporating MPI, albeit at the expense of increased CO emissions. The authors believe that results reported in this paper concerning regulated and unregulated pollutant-emission monitoring can contribute towards an accurate evaluation of both primary and secondary air-pollution scenarios in Korea
    corecore