2 research outputs found

    Dual‐logic‐in‐memory implementation with orthogonal polarization of van der Waals ferroelectric heterostructure

    No full text
    Abstract The rapid advancement of AI‐enabled applications has resulted in an increasing need for energy‐efficient computing hardware. Logic‐in‐memory is a promising approach for processing the data stored in memory, wherein fast and efficient computations are possible owing to the parallel execution of reconfigurable logic operations. In this study, a dual‐logic‐in‐memory device, which can simultaneously perform two logic operations in four states, is demonstrated using van der Waals ferroelectric field‐effect transistors (vdW FeFETs). The proposed dual‐logic‐in‐memory device, which also acts as a two‐bit storage device, is a single bidirectional polarization‐integrated ferroelectric field‐effect transistor (BPI‐FeFET). It is fabricated by integrating an in‐plane vdW ferroelectric semiconductor SnS and an out‐of‐plane vdW ferroelectric gate dielectric material—CuInP2S6. Four reliable resistance states with excellent endurance and retention characteristics were achieved. The two‐bit storage mechanism in a BPI‐FeFET was analyzed from two perspectives: carrier density and carrier injection controls, which originated from the out‐of‐plane polarization of the gate dielectric and in‐plane polarization of the semiconductor, respectively. Unlike conventional multilevel FeFETs, the proposed BPI‐FeFET does not require additional pre‐examination or erasing steps to switch from/to an intermediate polarization, enabling direct switching between the four memory states. To utilize the fabricated BPI‐FeFET as a dual‐logic‐in‐memory device, two logical operations were selected (XOR and AND), and their parallel execution was demonstrated. Different types of logic operations could be implemented by selecting different initial states, demonstrating various types of functions required for numerous neural network operations. The flexibility and efficiency of the proposed dual‐logic‐in‐memory device appear promising in the realization of next‐generation low‐power computing systems

    Electronic and electrocatalytic applications based on solution‐processed two‐dimensional platinum diselenide with thickness‐dependent electronic properties

    No full text
    Abstract Platinum diselenide (PtSe2) has shown great potential as a candidate two‐dimensional (2D) material for broadband photodetectors and electrocatalysts because of its unique properties compared to conventional 2D transition metal dichalcogenides. Synthesis of 2D PtSe2 with controlled layer number is critical for engineering the electronic behavior to be semiconducting or semimetallic for targeted applications. Electrochemical exfoliation has been investigated as a promising approach for mass‐producing in a cost‐effective manner, but obtaining high‐quality films with control over electronic properties remains difficult. Here, we demonstrate wafer‐scale 2D PtSe2 films with pre‐determined electronic types based on a facile solution‐based strategy. Semiconducting or semimetallic PtSe2 nanosheets with large lateral sizes are produced via electrochemically driven molecular intercalation, followed by centrifugation‐based thickness sorting. Finally, gate‐tunable broadband visible and near‐infrared photodetector arrays are realized based on semiconducting PtSe2 nanosheet films, while semimetallic films are used to create catalytic electrodes for overall water splitting with long‐term stability
    corecore