30 research outputs found

    Impact of perception models on friendship paradox and opinion formation

    Get PDF
    Topological heterogeneities of social networks have a strong impact on the individuals embedded in those networks. One of the interesting phenomena driven by such heterogeneities is the friendship paradox (FP), stating that the mean degree of one's neighbors is larger than the degree of oneself. Alternatively, one can use the median degree of neighbors as well as the fraction of neighbors having a higher degree than oneself. Each of these reflects on how people perceive their neighborhoods, i.e., their perception models, hence how they feel peer pressure. In our paper, we study the impact of perception models on the FP by comparing three versions of the perception model in networks generated with a given degree distribution and a tunable degree-degree correlation or assortativity. The increasing assortativity is expected to decrease network-level peer pressure, while we find a nontrivial behavior only for the mean-based perception model. By simulating opinion formation, in which the opinion adoption probability of an individual is given as a function of individual peer pressure, we find that it takes the longest time to reach consensus when individuals adopt the median-based perception model compared to other versions. Our findings suggest that one needs to consider the proper perception model for better modeling human behaviors and social dynamics

    Identification of the antibacterial action mechanism of diterpenoids through transcriptome profiling

    Get PDF
    Effective antibacterial substances of Aralia continentalis have anti-biofilm and bactericidal activity to the oral pathogen Streptococcus mutans. In this study, three compounds extracted from A. continentalis were identified as acanthoic acid, continentalic acid, and kaurenoic acid by NMR and were further investigated how these diterpenoids affect the physiology of the S. mutans. When S. mutans was exposed to individual or mixed fraction of diterpenoids, severe growth defects and unique morphology were observed. The proportion of unsaturated fatty acids in the cell membrane was increased compared to that of saturated fatty acids in the presence of diterpenoids. Genome-wide gene expression profiles with RNA-seq were compared to reveal the mode of action of diterpenoids. Streptococcus mutans commonly enhanced the expression of 176 genes in the presence of the individual diterpenoids, whereas the expression of 232 genes was considerably reduced. The diterpenoid treatment modulated the expression of genes or operon(s) involved in cell membrane synthesis, cell division, and carbohydrate metabolism of S. mutans. Collectively, these findings provide novel insights into the antibacterial effect of diterpenoids to control S. mutans infection, which causes human dental caries

    Determinants of credit spreads on U.S. dollar-denominated Asian corporate bonds

    No full text
    Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2014.Cataloged from PDF version of thesis.Includes bibliographical references (pages 34-35).This study investigates determinants of credit spreads on U.S. dollar-denominated Asian corporate bonds. Using a country-level unbalanced panel dataset of Asian corporate bond indices, I find that global factors including U.S. corporate bond spreads and the U.S. long-term Treasury yield are main determinants of Asian corporate bond spreads. Principal component analysis also demonstrates that only a few variables account for the variation in Asian corporate bond spreads. Moreover, global factors have the greatest impact on credit spreads in the financial sector and the smallest impact on credit spreads in the utility sector. Finally, my results show that Asian corporate credit spreads respond more substantially to the U.S. monetary easing than to the U.S. monetary tightening, and they also react more strongly to widening U.S. credit spreads than to narrowing U.S. credit spreads.by Sungmin Jo.M.B.A

    STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters for Static Workload Performance

    No full text
    Modern Linux operating systems are being used in a wide range of fields, from small IoT embedded devices to supercomputers. However, most machines use the default Linux scheduler parameters implemented for general-purpose environments. The problem is that the Linux scheduler cannot utilize the features of the various hardware and software environments, and it is therefore, difficult to achieve optimal performance in the machines. In this paper, we propose STUN, an automatic scheduler optimization framework. STUN modifies the five scheduling policies of the Linux kernel and 10 parameters automatically to optimize for each workload environment. STUN decreases the training time and enhances the efficiency through a filtering mechanism and training reward algorithms. Using STUN, users can optimize the performance of their machines at the OS scheduler level without manual control of the scheduler. STUN showed an execution time and improved FPS of 18.3% and 22.4% on a face detection workload, respectively. In addition, STUN showed 26.97%, 54.42%, and 256.13% performance improvements for microbenchmarks with 4, 44, and 120 cores for each

    Transcriptome Analysis of Halotolerant Staphylococcus saprophyticus Isolated from Korean Fermented Shrimp

    No full text
    Saeu-jeotgal, a Korean fermented shrimp food, is commonly used as an ingredient for making kimchi and other side dishes. The high salinity of the jeotgal contributes to its flavor and inhibits the growth of food spoilage microorganisms. Interestingly, Staphylococcus saprophyticus was discovered to be capable of growth even after treatment with 20% NaCl. To elucidate the tolerance mechanism, a genome-wide gene expression of S. saprophyticus against 0%, 10%, and 20% NaCl was investigated by RNA sequencing. A total of 831, 1314, and 1028 differentially expressed genes (DEGs) were identified in the 0% vs. 10%, 0% vs. 20%, and 10% vs. 20% NaCl comparisons, respectively. The Clusters of Orthologous Groups analysis revealed that the DEGs were involved in amino acid transport and metabolism, transcription, and inorganic ion transport and metabolism. The functional enrichment analysis showed that the expression of the genes encoding mechanosensitive ion channels, sodium/proton antiporters, and betaine/carnitine/choline transporter family proteins was downregulated, whereas the expression of the genes encoding universal stress proteins and enzymes for glutamate, glycine, and alanine synthesis was upregulated. Therefore, these findings suggest that the S. saprophyticus isolated from the saeu-jeotgal utilizes different molecular strategies for halotolerance, with glutamate as the key molecule

    Biomechanical analysis analyzing association between bone mineral density and lag screw migration

    No full text
    Abstract A proximal femoral nail using a helical blade (HB) is commonly utilized to treat proximal femoral fracture but cut through failure of the lag screws is one of the devastating complications following the surgery. While controversial, one of the potential risk factors for cut through failure is poor bone strength which can be predicted by measuring bone mineral density (BMD). In this study, we performed a biomechanical test on the fractured femoral head to validate whether the indirectly measured BMD from the contralateral hip or that measured directly from the retrieved femoral head can elucidate the structural strength of the fractured femoral head and thereby can be used to predict migration of lag screws. Our result showed that directly measured BMD has a significant correlation with the HB migration on the osteoporotic femoral head. However, while the BMDs measured from the contralateral femoral neck or total hip is the most widely used parameter to predict the bone strength of the fractured femur, this may have limited usability to predict HB migration

    Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler

    No full text
    Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable

    Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler

    No full text
    Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable
    corecore