8 research outputs found
Study on Roasting for Selective Lithium Leaching of Cathode Active Materials from Spent Lithium-Ion Batteries
Recently, many studies have been conducted on the materialization of spent batteries. In conventional cases, lithium is recovered from an acidic solution through the leaching and separation of valuable metals; however, it is difficult to remove impurities because lithium is recovered in the last step. Cathode active materials of lithium-ion batteries comprise oxides with lithium, such as LiNixCoyMnzO2 and LiCoO2. Thus, lithium should be converted into a compound that can be leached in deionized water for selective lithium leaching. Recent studies on the leaching and recovery of Li2CO3 through a carbon reduction reaction show low economic efficiency, due to the solubility of Li2CO3 at room temperature being as low as 13 g/L. This paper proposes a method of roasting after nitric acid deposition for selective lithium leaching and recovery to LiNO3. Based on experiments involving the varying of the amount of nitric acid, roasting temperature, and solid–liquid ratio, optimal values were found to be dipping in 10 M HNO3 2 mL/g, roasting at 275 °C, and deionized water with a solid–liquid ratio of 10 mL/g, respectively. Over 80% Li leaching was possible under these conditions. IC analysis confirmed that the purity was 97% lithium nitrate
Multimodal Sensing Capabilities for the Detection of Shunt Failure
Hydrocephalus is a medical condition characterized by the abnormal accumulation of cerebrospinal fluid (CSF) within the cavities of the brain called ventricles. It frequently follows pediatric and adult congenital malformations, stroke, meningitis, aneurysmal rupture, brain tumors, and traumatic brain injury. CSF diversion devices, or shunts, have become the primary therapy for hydrocephalus treatment for nearly 60 years. However, routine treatment complications associated with a shunt device are infection, obstruction, and over drainage. Although some (regrettably, the minority) patients with shunts can go for years without complications, even those lucky few may potentially experience one shunt malfunction; a shunt complication can require emergency intervention. Here, we present a soft, wireless device that monitors distal terminal fluid flow and transmits measurements to a smartphone via a low-power Bluetooth communication when requested. The proposed multimodal sensing device enabled by flow sensors, for measurements of flow rate and electrodes for measurements of resistance in a fluidic chamber, allows precision measurement of CSF flow rate over a long time and under any circumstances caused by unexpected or abnormal events. A universal design compatible with any modern commercial spinal fluid shunt system would enable the widespread use of this technology
Multimodal Sensing Capabilities for the Detection of Shunt Failure
Hydrocephalus is a medical condition characterized by the abnormal accumulation of cerebrospinal fluid (CSF) within the cavities of the brain called ventricles. It frequently follows pediatric and adult congenital malformations, stroke, meningitis, aneurysmal rupture, brain tumors, and traumatic brain injury. CSF diversion devices, or shunts, have become the primary therapy for hydrocephalus treatment for nearly 60 years. However, routine treatment complications associated with a shunt device are infection, obstruction, and over drainage. Although some (regrettably, the minority) patients with shunts can go for years without complications, even those lucky few may potentially experience one shunt malfunction; a shunt complication can require emergency intervention. Here, we present a soft, wireless device that monitors distal terminal fluid flow and transmits measurements to a smartphone via a low-power Bluetooth communication when requested. The proposed multimodal sensing device enabled by flow sensors, for measurements of flow rate and electrodes for measurements of resistance in a fluidic chamber, allows precision measurement of CSF flow rate over a long time and under any circumstances caused by unexpected or abnormal events. A universal design compatible with any modern commercial spinal fluid shunt system would enable the widespread use of this technology
A Soft, Biocompatible Magnetic Field Enabled Wireless Surgical Lighting Patty for Neurosurgery
General surgical procedures are subject to low-light conditions or a narrow angle of view, and such limitations in light limit visibility and complicate the given surgical procedure. Conventional lighted surgical tools rely on an external light source, which may be oriented into a cavity or mounted on a surgical instrument such as retractor, endoscopes, or suction tubes. However, such conventional lighted instruments do not provide adequate lighting during various surgical procedures. Here, we present a soft, miniaturized magnetic-enabled wireless surgical lighting patty. Specifically, the proposed surgical lighting patty that can be temporarily implanted into a cavity or surgical corridor provides lighting to the surgical subject and manages fluids in a surgical field. The surgical lighting patty is a multilayer patty, two outer layers of the lighted surgical patty and the center lighted layer. A reed switch in the central layer can activate the power supply in response to a magnet to emit the light from the light source. The result allows a dramatically simplified wireless operation. Moreover, it can provide various wavelengths of light to a surgical field for purposes such as illuminating the surgeon’s field of vision, exciting dyes, and sterilizing surgical fields
Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways
Advances in wireless technologies have enabled internalisation of light sources, but organ specific illumination is challenging. Here, the authors present a durable, multimodal, wireless system enabling optogenetic stimulation of peripheral neurons within organs