32 research outputs found

    Monitoring of multi-frequency polarization of gamma-ray bright AGNs

    Full text link
    We started two observing programs with the Korean VLBI Network (KVN) monitoring changes in the flux density and polarization of relativistic jets in gamma-ray bright AGNs simultaneously at 22, 43, 86, 129 GHz. One is a single-dish weekly-observing program in dual polarization with KVN 21-m diameter radio telescopes beginning in 2011 May. The other is a VLBI monthly-observing program with the three-element VLBI network at an angular resolution range of 1.0--9.2 mas beginning in 2012 December. The monitoring observations aim to study correlation of variability in gamma-ray with that in radio flux density and polarization of relativistic jets when they flare up. These observations enable us to study the origin of the gamma-ray flares of AGNs.Comment: 4 pages, 4 figures, Proceedings of the conference "The innermost regions of relativistic jets and their magnetic fields", Granada, Spai

    Variation in Abundance Ratio of Isoprene and Dipentene Produced from Wear Particles Composed of Natural Rubber by Pyrolysis Depending on the Particle Size and Thermal Aging

    No full text
    Tire wear particles (TWPs) are generated by friction between the road and the tire. TWPs are one of the major microplastics found in environmental samples, such as road dust, particulate matter (PM), and sediment. TWP contents in environmental samples are generally analyzed using the pyrolysis technique. Tire tread compounds of heavy vehicles are usually composed of natural rubber (NR). Isoprene and dipentene are the principal pyrolysis products of NR, and dipentene is employed as the key marker for the determination of the TWP contents. In this study, an NR abrasion specimen was thermally aged, and an abrasion test was performed to obtain the wear particles. The influence of the wear particle size and thermal aging on the pyrolysis behavior of NR was investigated. The isoprene/dipentene ratio exponentially increased as the wear particle size decreased, and it was also increased by the thermal aging of the abrasion specimen. The increased isoprene/dipentene ratio by thermal aging was explained by increasing the crosslink density. Using the relationship between the wear particle size and the isoprene/dipentene ratio, it is possible to estimate the isoprene/dipentene ratio for very small TWP such as PM. The experimental results concluded that the wear particle size and thermal aging affect the formation of the key pyrogenic products, and the influencing factors should be considered for the quantification of TWP contents in the environmental samples

    Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry

    No full text
    Particulate matters (PMs) such as PM10 and PM2.5 were collected at a bus stop and were analyzed using pyrolysis-gas chromatography/mass spectrometry to identify organic polymeric materials in them. The major pyrolysis products of the PM samples were isoprene, toluene, styrene, dipentene, and 1-alkenes. The pyrolysis products generated from the PM samples were identified using reference polymeric samples such as common rubbers (natural rubber, butadiene rubber, and styrene-butadiene rubber), common plastics (polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate)), plant-related components (bark, wood, and leaf), and bitumen. The major sources of the principal polymeric materials in the PM samples were found to be the abrasion of the tire tread and asphalt pavement, plant-related components, and lint from polyester fabric. The particles produced by the abrasion of the tire tread and asphalt pavement on the road were non-exhaustive sources, while the plant-related components and lint from polyester fabric were inflowed from the outside

    Carbon black effect on the pyrolysis behavior of natural rubber in tire wear particles

    No full text
    Natural rubber (NR) is major rubber component of tire tread compounds. Tire wear particles (TWPs) are found in the environment, and their quantification has been performed using a pyrolysis technique. Isoprene and dipentene are principal pyrolysis products of NR. In the present work, model TWPs with different sizes and carbon black contents were prepared using tire tread compounds made of NR and an abrasion tester. The carbon black contents were 35, 55, and 75 phr (sample codes: C33, C55, and C75, respectively). The TWPs of 1.0 × 104–4.0 × 106 μm [2], corresponding to the NR weight of 1–1094 μg, were pyrolyzed, and influence of the particle size and carbon black content on the pyrolysis behavior of NR was investigated. The abundances of isoprene and dipentene produced by the TWPs were lower than those produced by the pure NR sample of the same weight. The production rate of dipentene in the C35 sample was lower than those in the other samples. The isoprene/dipentene ratios of the TWPs were lower than those of the pure NR with the same weight. By decreasing the TWP size, the isoprene/dipentene ratios slightly increased until the TWP size was approximately 1.0 × 105 μm [2] and then exponentially increased. The factors influencing the pyrolysis behavior of the TWPs were the adsorption of the pyrolysis products by carbon black, the relatively more significant production rate of isoprene in the sulfur-crosslinked region, and the pyrolysis behavior in the bound rubber region similar to that of pure NR. Because the pyrolysis behaviors of the TWPs differed depending on the size and carbon black content, it should be considered to quantify the TWP content in environmental samples

    Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density

    No full text
    Tire treads are abraded by friction with the road surface, producing tire tread wear particles (TWPs). TWPs combined with other particles on the road such as road wear particles (RWPs) and mineral particles (MPs), forming tire-road wear particles (TRWPs). Dust on an asphalt pavement road is composed of various components such as TRWPs, asphalt pavement wear particles (APWPs), MPs, plant-related particles (PRPs), and so on. TRWPs have been considered as one of major contaminants produced by driving and their properties are important for study on real abrasion behaviors of tire treads during driving as well as environmental contamination. Densities of the TRWPs are totally dependent on the amount of the other components deposited in the TWPs. In this study, a classification method of TRWPs in the road dust was developed using density separation and the classified TRWPs were characterized using image analysis and pyrolytic technique. Chloroform was used to remove APWPs from mixture of TRWPs and APWPs. TRWPs were found in the density range of 1.20–1.70 g/cm3. By decreasing the particle size of the road dust, the TRWP content in the road dust increased and its density slightly tended to increase. Aspect ratios of the TRWPs varied and there were many TRWPs with low aspect ratio below 2.0. The aspect ratio range was 1.2–5.2. Rubber compositions of the TRWPs were found to be mainly NR/SBR biblend or NR/BR/SBR triblend

    Preparation and Characterization of Model Tire–Road Wear Particles

    No full text
    Tire tread wear particles (TWPs) are one of major sources of microplastics in the environment. Tire–road wear particles (TRWPs) are mainly composed of TWPs and mineral particles (MPs), and many have long shapes. In the present work, a preparation method of model TRWPs similar to those found in the environment was developed. The model TRWPs were made of TWPs of 212–500 μm and MPs of 20–38 μm. Model TWPs were prepared using a model tire tread compound and indoor abrasion tester while model MPs were prepared by crushing granite rock. The TWPs and MPs were mixed and compressed using a stainless steel roller. The TWPs were treated with chloroform to make them stickier. Many MPs in the model TRWP were deeply stuck into the TWPs. The proper weight ratio of MP and TWP was MP:TWP = 10:1, and the double step pressing procedure was good for the preparation of model TRWPs. The model TRWPs were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The model TRWPs had long shapes and the MP content was about 10%. The model TRWPs made of TWPs and asphalt pavement wear particles showed plate-type particles deeply stuck into the TWP. Characteristics of model TRWPs can be controlled by employing various kinds and sizes of TWPs and MPs. The well-defined model TRWPs can be used as the reference TRWPs for tracing the pollutants

    Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy.

    No full text
    To compare the patterns of retinal ganglion cell damage between primary open-angle glaucoma (POAG) and non-arteritic anterior ischaemic optic neuropathy (NAION).In total, 35 eyes with unilateral NAION, and 70 age- and average peripapillary retinal nerve fibre layer (RNFL) thickness-matched eyes with POAG, were enrolled as disease groups; 35 unaffected fellow eyes of the NAION, and 70 age- and refractive error-matched normal subjects for the POAG, were enrolled as their control groups, respectively. The peripapillary RNFL thickness and macular ganglion cell plus inner plexiform layer (GCIPL) thickness were compared between the disease groups and their controls, and between the two disease groups.Mean RNFL thicknesses at the 1 and 2 o'clock (superonasal) positions were thinner in NAION than in POAG (both p < 0.05). Mean RNFL thickness at 7 o'clock (inferotemporal) was thinner in POAG than in NAION (p = 0.001). Although there was no significant difference between NAION and POAG in average GCIPL thickness, all of the sectoral GCIPL thicknesses were thinner in NAION (all p < 0.05), except in the inferior and inferotemporal sectors. The ranges of the clock-hour RNFL with damage greater than the average RNFL thickness reduction, versus fellow eyes and control eyes, were 7 hours in NAION and 4 hours in POAG.The more damaged clock-hour RNFL regions differed between NAION (1 and 2 o'clock) and POAG (7 o'clock). Most sectoral GCIPL thicknesses were thinner in NAION than in POAG
    corecore