2,306 research outputs found

    Numerical modeling to analysis the abrasion of knee joint by walking pattern

    Get PDF
    In current studies, growing up of treatment of the knee joint damage such as arthritis, the research to prevent knee joint is under way. As knee joints could be damaged by various types of motion, one of the most influential factor of the abrasion on the knee joint is progressed by walking. It could be classified as 3 types of walking, 1. Walking plain, 2. Climbing stairs or uphill and 3. Going down. In this study, to find the damaged point of knee joint, the following ways would be used. After comparing the knee joint angle with interior and exterior movement of the knee in accordance with the joint dynamics of typical height, the walking pattern for walking up the stairs can be comprehended. It could be shown the variation of the center of rotation of knee joint. From this, the contact point which is pressed on the knee joints in accordance with each walking pattern could be derived. The numerical modeling could be made by quantifying the variety that is caused by the center of mass of knee bone. It would be expected to calculate the contact point on the knee joint through walking patterns. This numerical model is considered of the kinematics system in our knee

    Crude Extracts of Caenorhabditis elegans Suppress Airway Inflammation in a Murine Model of Allergic Asthma

    Get PDF
    Epidemiological studies suggest an inverse relationship between helminth infections and allergic disease, and several helminth-derived products have been shown to suppress allergic responses in animals. This study was undertaken to evaluate the effect of a crude extract of Caenorhabditis elegans on allergic airway inflammation in a murine model of asthma. Allergic airway inflammation was induced in BALB/c mice by sensitization with ovalbumin. The effect of the C. elegans crude extract on the development of asthma and on established asthma was evaluated by analyzing airway hyperresponsiveness, serum antibody titers, lung histology and cell counts and cytokine levels in the bronchoalveolar lavage fluid. The role of IFN-γ in the suppression of asthma by the C. elegans crude extract was investigated in IFN-γ knockout and wild-type mice. When mice were sensitized with ovalbumin together with the crude extract of C. elegans, cellular infiltration into the lung was dramatically reduced in comparison with the ovalbumin-treated group. Treatment of mice with the C. elegans crude extract significantly decreased methacholine-induced airway hyperresponsiveness and the total cell counts and levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid but increased the levels of IFN-γ and IL-12. Sensitization with the C. elegans crude extract significantly diminished the IgE and IgG1 responses but provoked elevated IgG2a levels. However, the suppressive effect of the C. elegans crude extract was abolished in IFN-γ knockout mice, and the Th2 responses in these mice were as strong as those in wild-type mice sensitized with ovalbumin. The crude extract of C. elegans also suppressed the airway inflammation associated with established asthma. This study provides new insights into immune modulation by the C. elegans crude extract, which suppressed airway inflammation in mice not only during the development of asthma but also after its establishment by skewing allergen-induced Th2 responses to Th1 responses

    Diosgenin Induces Apoptosis in HepG2 Cells through Generation of Reactive Oxygen Species and Mitochondrial Pathway

    Get PDF
    Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase (PARP) and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1, as well as generation of the ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream signals for JNK/p38 MAPK activation in HepG2 cancer cells

    Surgical castration efficiently delays the time of starting a systemic chemotherapy in castration-resistant prostate cancer patients refractory to initial androgen-deprivation therapy

    Get PDF
    AbstractBackgroundThe aim of this study was to investigate the effects of surgical castration, particularly delaying the time to entrance of systemic chemotherapy, in castration-resistant prostate cancer (CRPC) patients who were refractory to initial combination androgen deprivation therapy.Materials and methodsWe analyzed the clinical data of 14 CRPC patients diagnosed at Seoul National University Bundang Hospital (SNUBH) from November 2008 through May 2015. After exclusion of three patients, we finally analyzed the baseline characteristics of 11 CRPC patients. We also assessed the delaying time of docetaxel administration, which was defined as response duration, after surgical castration.ResultsAfter bilateral orchiectomy, the treatment response rate was 45.4% and the median duration of response was 9 months (range 4–48 mo). Responders had less aggressive biopsy Gleason scores compared to nonresponders. Notably, responders showed the reducing pattern of serum prostate specific antigen levels, while nonresponders demonstrated increasing tendency after surgical castration. Moreover, responders also presented with a reduction pattern of serum testosterone levels, whereas nonresponders showed an increasing pattern of testosterone levels after bilateral orchiectomy.ConclusionsIn summary, despite the limited number of cases for convincing evidence, our results shed light again on the clinical benefits of surgical castration prior to the systemic chemotherapy in some CRPC patients after initial hormone therapy

    Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis

    Get PDF
    Introduction IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10. Methods Synoviocytes derived from RA patients were kept in culture for 24 hours in the presence or absence of TNF-α. CXCL10 expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR) of cultured synoviocytes. Expression of RANKL was measured by RT-PCR and western blot in cultured synoviocytes with or without CXCL10 and also measured in Jurkat/Hut 78 T cells and CD4+ T cells in the presence of CXCL10 or dexamethasone. CXCL10 induced RANKL expression in Jurkat T cells was tested upon the pertussis toxin (PTX), an inhibitor of Gi subunit of G protein coupled receptor (GPCR). The synthetic siRNA for Gαi2 was used to knock down gene expression of respective proteins. Results CXCL10 expression in RA synoviocytes was increased by TNF-α. CXCL10 slightly increased RANKL expression in RA synoviocytes, but markedly increased RANKL expression in Jurkat/Hut 78 T cell or CD4+ T cell. CXCL10 augmented the expression of RANKL by 62.6%, and PTX inhibited both basal level of RANKL (from 37.4 ± 16.0 to 18.9 ± 13.0%) and CXCL10-induced RANKL expression in Jurkat T cells (from 100% to 48.6 ± 27.3%). Knock down of Gαi2 by siRNA transfection, which suppressed the basal level of RANKL (from 61.8 ± 17.9% to 31.1 ± 15.9%) and CXCL10-induced RANKL expression (from 100% to 53.1 ± 27.1%) in Jurkat T cells, is consistent with PTX, which inhibited RANKL expression. Conclusions CXCL10 increased RANKL expression in CD4+ T cells and it was mediated by Gαi subunits of CXCR3. These results indicate that CXCL10 may have a potential role in osteoclastogenesis of RA synovial tissue and subsequent joint erosion

    Menthol Enhances an Antiproliferative Activity of 1α,25-Dihydroxyvitamin D3 in LNCaP Cells

    Get PDF
    1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the most active form of vitamin D3, and its analogues have therapeutic benefits for prostate cancer treatment. However, the development of hypercalcemia is an obstacle to clinical applications of 1α,25(OH)2D3 for cancer therapy. In this study, we provide evidence that menthol, a key component of peppermint oil, increases an anti-proliferation activity of 1α,25(OH)2D3 in LNCaP prostate cancer cells. We found that menthol per se does not exhibit antiproliferative activity, but it is able to enhance 1α,25(OH)2D3-mediated growth inhibition in LNCaP cells. Fluorometric assays using Fura-2 showed that 1α,25(OH)2D3 does not induce acute Ca2+ response, whereas menthol evokes an increase in [Ca2+]i, which suggests that cross-talks of menthol-induced Ca2+ signaling with 1α,25(OH)2D3-mediated growth inhibition pathways. In addition, Western blot analysis revealed that 1α,25(OH)2D3 and menthol cooperatively modulate the expression of bcl-2 and p21 which provides the insight into the molecular mechanisms underlying the enhanced 1α,25(OH)2D3-mediated growth inhibition by menthol. Thus, our findings suggest that menthol may be a useful natural compound to enhance therapeutic effects of 1α,25(OH)2D3
    corecore