5,375 research outputs found

    Bioinformatic discovery of microRNA precursors from human ESTs and introns

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) function in many physiological processes, and their discovery is beneficial for further studying their physiological functions. However, many of the miRNAs predicted from genomic sequences have not been experimentally validated to be authentic expressed RNA transcripts, thereby decreasing the reliability of miRNA discovery. To overcome this problem, we examined expressed transcripts – ESTs and intronic sequences – to identify novel miRNAs as well as their target genes. RESULTS: To facilitate our approach, we developed our scanning method using criteria based on the features of 207 known human pre-miRNAs to discriminate miRNAs from random sequences. We identified 208 candidate hairpins in human ESTs and human reference gene intronic sequences, 52 of which are known pre-miRNAs. The discovery pipeline performance was further assessed using 130 newly updated pre-miRNA and randomly selected sequences. We achieved sensitivity of 85% (110/130) and overall specificity of 49.7% using this method. Because miRNAs are evolutionarily conserved regulators of gene expression, it is expected that their host genes and target genes should have respective phylogenetic orthologs. Our results confirmed that, in certain mammals, the host genes carrying the same miRNAs are orthologs, as previously reported. Moreover, this observation is also the case for some of the miRNA target genes. CONCLUSION: We have predicted 208 human pre-miRNA candidates and over 10,000 putative human target genes. Using sequence information from ESTs and introns ensures that the predicted pre-miRNA candidates are expressed and the combined expression transcription information from ESTs and introns makes our prediction results more decisive with regard to expressed pre-miRNAs

    A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: Comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human embryonic stem (hES) cell lines were derived from the inner cell mass of human blastocysts, and were cultured on mouse embryonic fibroblast (MEF) feeder to maintain undifferentiated growth, extensive renewal capacity, and pluripotency. The hES-T3 cell line with normal female karyotype was previously used to differentiate into autogeneic fibroblast-like cells (T3HDF) as feeder to support the undifferentiated growth of hES-T3 cells (T3/HDF) for 14 passages.</p> <p>Results</p> <p>A feeder-free culture on Matrigel in hES medium conditioned by the autogeneic feeder cells (T3HDF) was established to maintain the undifferentiated growth of hES-T3 cells (T3/CMHDF) for 8 passages in this investigation. The gene expression profiles of mRNAs, microRNAs and proteins between the undifferentiated T3/HDF and T3/CMHDF cells were shown to be very similar, and their expression profiles were also found to be similar to those of T3/MEF and T3/CMMEF cells grown on MEF feeder and feeder-free Matrigel in MEF-conditioned medium, respectively. The undifferentiated state of T3/HDF and T3/CMHDF as well as T3/MEF andT3/CMMEF cells was evidenced by the very high expression levels of "stemness" genes and low expression levels of differentiation markers of ectoderm, mesoderm and endoderm in addition to the strong staining of OCT4 and NANOG.</p> <p>Conclusion</p> <p>The T3HDF feeder and T3HDF-conditioned medium were able to support the undifferentiated growth of hES cells, and they would be useful for drug development and toxicity testing in addition to the reduced risks of xenogeneic pathogens when used for medical applications such as cell therapies.</p

    miRNA arm selection and isomiR distribution in gastric cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small non-protein-coding RNAs. miRNA genes need several biogenesis steps to form function miRNAs. However, the precise mechanism and biology involved in the mature miRNA molecules are not clearly investigated. In this study, we conducted in-depth analyses to examine the arm selection and isomiRs using NGS platform. METHODS: We sequenced small RNAs from one pair of normal and gastric tumor tissues with Solexa platform. By analyzing the NGS data, we quantified the expression profiles of miRNAs and isomiRs in gastric tissues. Then, we measured the expression ratios of 5p arm to 3p arm of the same pre-miRNAs. And, we used Kolmogorov-Smirnov (KS) test to examine isomiR pattern difference between tissues. RESULTS: Our result showed the 5p arm and 3p arm miRNA derived from the same pre-miRNAs have different tissue expression preference, one preferred normal tissue and the other preferred tumor tissue, which strongly implied that there could be other mechanism controlling mature miRNA selection in addition to the known hydrogen-bonding selection rule. Furthermore, by using the KS test, we demonstrated that some isomiR types preferentially occur in normal gastric tissue but other types prefer tumor gastric tissue. CONCLUSIONS: Arm selections and isomiR patterns are significantly varied in human cancers by using deep sequencing NGS data. Our results provided a novel research topic in miRNA regulation study. With advanced bioinformatics and molecular biology studies, more robust conclusions and insight into miRNA regulation can be achieved in the near future

    UMARS: Un-MAppable Reads Solution

    Get PDF
    [[abstract]]Background: Un-MAppable Reads Solution (UMARS) is a user-friendly web service focusing on retrieving valuable information from sequence reads that cannot be mapped back to reference genomes. Recently, next-generation sequencing (NGS) technology has emerged as a powerful tool for generating high-throughput sequencing data and has been applied to many kinds of biological research. In a typical analysis, adaptor-trimmed NGS reads were first mapped back to reference sequences, including genomes or transcripts. However, a fraction of NGS reads failed to be mapped back to the reference sequences. Such un-mappable reads are usually imputed to sequencing errors and discarded without further consideration.Methods: We are investigating possible biological relevance and possible sources of un-mappable reads. Therefore, we developed UMARS to scan for virus genomic fragments or exon-exon junctions of novel alternative splicing isoforms from un-mappable reads. For mapping un-mappable reads, we first collected viral genomes and sequences of exon-exon junctions. Then, we constructed UMARS pipeline as an automatic alignment interface.Results: By demonstrating the results of two UMARS alignment cases, we show the applicability of UMARS. We first showed that the expected EBV genomic fragments can be detected by UMARS. Second, we also detected exon-exon junctions from un-mappable reads. Further experimental validation also ensured the authenticity of the UMARS pipeline. The UMARS service is freely available to the academic community and can be accessed via http://musk.ibms.sinica.edu.tw/UMARS/.Conclusions: In this study, we have shown that some un-mappable reads are not caused by sequencing errors. They can originate from viral infection or transcript splicing. Our UMARS pipeline provides another way to examine and recycle the un-mappable reads that are commonly discarded as garbage

    Discovery and characterization of medaka miRNA genes by next generation sequencing platform

    Get PDF
    Background MicroRNAs (miRNAs) are endogenous non-protein-coding RNA genes which exist in a wide variety of organisms, including animals, plants, virus and even unicellular organisms. Medaka (Oryzias latipes) is a useful model organism among vertebrate animals. However, no medaka miRNAs have been investigated systematically. It is beneficial to conduct a genome-wide miRNA discovery study using the next generation sequencing (NGS) technology, which has emerged as a powerful sequencing tool for high-throughput analysis. Results In this study, we adopted ABI SOLiD platform to generate small RNA sequence reads from medaka tissues, followed by mapping these sequence reads back to medaka genome. The mapped genomic loci were considered as candidate miRNAs and further processed by a support vector machine (SVM) classifier. As result, we identified 599 novel medaka pre-miRNAs, many of which were found to encode more than one isomiRs. Besides, additional minor miRNAs (also called miRNA star) can be also detected with the improvement of sequencing depth. These quantifiable isomiRs and minor miRNAs enable us to further characterize medaka miRNA genes in many aspects. First of all, many medaka candidate pre-miRNAs position close to each other, forming many miRNA clusters, some of which are also conserved across other vertebrate animals. Secondly, during miRNA maturation, there is an arm selection preference of mature miRNAs within precursors. We observed the differences on arm selection preference between our candidate pre-miRNAs and their orthologous ones. We classified these differences into three categories based on the distribution of NGS reads. Finally, we also investigated the relationship between conservation status and expression level of miRNA genes. We concluded that the evolutionally conserved miRNAs were usually the most abundant ones. Conclusions Medaka is a widely used model animal and usually involved in many biomedical studies, including the ones on development biology. Identifying and characterizing medaka miRNA genes would benefit the studies using medaka as a model organism

    Interplay between the magnetic and electric degrees-of-freedom in multiferroic Co3TeO6

    Full text link
    Neutron diffraction, magnetic susceptibility, specific heat, and dielectric constant measurements of single crystal Co3TeO6 have been measured to study the interplay between the ferroelectricity and magnetic order. Long range incommensurate magnetic order develops below TM1=26 K, which is followed by three additional zero-field phase transitions at TM2=19.5 K, TM3=18 K, and TM4=16 K where the incommensurate order changes and commensurate order develops. In magnetic fields up to 14 T we find that the magnetic intensities and incommensurate wave vector are dramatically altered as ferroelectricity develops, with a fifth abrupt transition around 10 T. The overall behavior characterizes Co3TeO6 as a type-II multiferroic.Comment: Phys. Rev. B (in press

    Influencing Factors for Cure of Clonorchiasis by Praziquantel Therapy: Infection Burden and CYP3A5 Gene Polymorphism

    Get PDF
    Chemotherapy of clonorchiasis with praziquantel (PZQ) is effective but about 15% of treated cases have been reported uncured. The present study investigated correlation of single nucleotide polymorphisms (SNPs) of the cytochrome P450 gene, CYP3A5 and cure of clonorchiasis. A total of 346 egg passing residents were subjected and treated by 3 doses of 25 mg/kg PZQ. Reexamination recognized 33 (9.5%) uncured and 313 cured. Numbers of eggs per gram of feces (EPGs) before treatment were significantly lower in the cured group than in the uncured group (2,011.2±3,600.0 vs 4,998.5±7,012.0, P<0.001). DNAs of the subjects were screened for SNPs at 7 locations of CYP3A5 using PCR. In the uncured group, the SNP frequencies at g.-20555G>A and g.27526C>T of CYP3A5 were 15.2% and 9.1% while those were 3.8% and 1.0%, respectively, in the cured group. The cure rate was significantly lower in the cases with SNP at g.27526C>T and EPGs≥1,000. In conclusion, EPGs and SNPs of CYP3A5 are factors which influence cure of clonorchiasis by PZQ therapy. It is strongly suggested to recommend 2-day medication for individuals with high EPGs≥1,000

    REG3A overexpression functions as a negative predictive and prognostic biomarker in rectal cancer patients receiving CCRT

    Get PDF
    Background. Concurrent chemoradiotherapy (CCRT) is suggested before resection surgery in the control of rectal cancer. Unfortunately, treatment outcomes are widely variable and highly patientspecific. Notably, rectal cancer patients with distant metastasis generally have a much lower survival rate. Accordingly, a better understanding of the genetic background of patient cohorts can aid in predicting CCRT efficacy and clinical outcomes for rectal cancer before distant metastasis. Methods. A published transcriptome dataset (GSE35452) (n=46) was utilized to distinguish prospective genes concerning the response to CCRT. We recruited 172 rectal cancer patients, and the samples were collected during surgical resection after CCRT. Immunohistochemical (IHC) staining was performed to evaluate the expression level of regenerating family member 3 alpha (REG3A). Pearson's chi-squared test appraised the relevance of REG3A protein expression to clinicopathological parameters. The Kaplan-Meier method was utilized to generate survival curves, and the log-rank test was performed to compare the survival distributions between two given groups. Results. Employing a transcriptome dataset (GSE35452) and focusing on the inflammatory response (GO: 0006954), we recognized that REG3A is the most significantly upregulated gene among CCRT nonresponders (log2 ratio=1.2472, p=0.0079). Following IHC validation, high immunoexpression of REG3A was considerably linked to advanced post-CCRT tumor status (p<0.001), post-CCRT lymph node metastasis (p=0.042), vascular invasion (p=0.028), and low-grade tumor regression (p=0.009). In the multivariate analysis, high immunoexpression of REG3A was independently correlated with poor disease-specific survival (DSS) (p=0.004) and metastasis-free survival (MeFS) (p=0.045). The results of the bioinformatic analysis also supported the idea that REG3A overexpression is implicated in rectal carcinogenesis. Conclusion. In the current study, we demonstrated that REG3A overexpression is correlated with poor CCRT effectiveness and inferior patient survival in rectal cancer. The predictive and prognostic utility of REG3A expression may direct patient stratification and decisionmaking more accurately for those patients

    Natural Product Chemistry of Gorgonian Corals of Genus Junceella—Part II

    Get PDF
    The structures, names, bioactivities, and references of 81 new secondary metabolites obtained from gorgonian corals belonging to the genus Junceella are described in this review. All compounds mentioned in this review were obtained from sea whip gorgonian corals Junceella fragilis and Junceella juncea, collected from the tropical and subtropical Indo-Pacific Ocean
    corecore