687 research outputs found

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    Current evidence and the potential role of proton beam therapy for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death, and external beam radiation therapy has emerged as a promising approach for managing HCC. Proton beam therapy (PBT) offers dosimetric advantages over X-ray therapy, with superior physical properties known as the Bragg peak. PBT holds promise for reducing hepatotoxicity and allowing safe dose-escalation to the tumor. It has been tried in various clinical conditions and has shown promising local tumor control and survival outcomes. A recent phase III trial demonstrated the non-inferiority of PBT in local tumor control compared to current standard radiofrequency ablation in early-stage HCC. PBT also tended to show more favorable outcomes compared to transarterial chemoembolization in the intermediate stage, and has proven effective in-field disease control and safe toxicity profiles in advanced HCC. In this review, we discuss the rationale, clinical studies, optimal indication, and future directions of PBT in HCC treatment

    Excess cost of non-remission among outpatients with major depressive disorder

    Get PDF
    Background: The purpose of this study was to assess the economic benefit of achieving remission among outpatients with major depressive disorder (MDD) who are currently employed in Korea. Methods: Cross-sectional observational study. A total of 337 outpatients with MDD with paid jobs were recruited from 14 psychiatric clinics in Korea and were then divided into three groups as follows: new visit group (n = 128), remitted group (n = 100) and non-remitted group (n = 109). The 17-item Hamilton Depression Rating Scale (HAM-D) was used to decide whether a patient should be assigned to the remitted or non-remitted group. Direct medical and non-medical costs were measured via interview with the subjects. The World Health Organization Health and Work Performance Questionnaire (HPQ) were applied in order to measure the lost productive time (LPT) and related productivity costs. Results: The three groups did not show a significant difference in direct medical cost. However, the difference between the remitted group and non-remitted group was statistically significant (25.49 ± 52.99 vs. 44.79 ± 126.55, χ2 = 12.99, p = 0.0015). The remitted group demonstrated a significant improvement in productivity (particularly presenteeism) when compared with the new visit group (Z = −3.29, p = 0.001). Although the non-remitted group received treatment at psychiatric clinics similar to the remitted group, it lost 33 more working hours per month, which is compatible to $332 per month. Conclusion: These results suggest the economic importance of achieving remission in treating depression

    Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation

    Get PDF
    The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation
    corecore