21 research outputs found

    Simple and Reliable Method to Incorporate the Janus Property onto Arbitrary Porous Substrates

    Full text link
    Economical fabrication of waterproof/breathable substrates has many potential applications such as clothing or improved medical dressing. In this work, a facile and reproducible fabrication method was developed to render the Janus property to arbitrary porous substrates. First, a hydrophobic surface was obtained by depositing a fluoropolymer, poly­(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PHFDMA), on various porous substrates such as polyester fabric, nylon mesh, and filter paper. With a one-step vapor-phase deposition process, termed as initiated chemical vapor deposition (iCVD), a conformal coating of hydrophobic PHFDMA polymer film was achieved on both faces of the porous substrate. Since the hydrophobic perfluoroalkyl functionality is tethered on PHFDMA via hydrolyzable ester functionality, the hydrophobic functionality on PHFDMA was readily released by hydrolysis reaction. Here, by simply floating the PHFDMA-coated substrates on KOH­(aq) solution, only the face of the PHFDMA-coated substrate in contact with the KOH­(aq) solution became hydrophilic by the conversion of the fluoroalkyl ester group in the PHFDMA to hydrophilic carboxylic acid functionality. The hydrophilized face was able to easily absorb water, showing a contact angle of less than 37°. However, the top side of the PHFDMA-coated substrate was unaffected by the exposure to KOH­(aq) solution and remained hydrophobic. Moreover, the carboxylated surface was further functionalized with aminated polystyrene beads. The porous Janus substrates fabricated using this method can be applied to various kinds of clothing such as pants and shirts, something that the lamination process for Gore-tex has not allowed

    Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry

    Full text link
    Flexible microfluidic system is an essential component of wearable biosensors to handle body fluids. A parylene-based, thin-film microfluidic system is developed to achieve flexible microfluidics with microscale bending radius. A new molding and bonding technique is developed for parylene microchannel fabrication. Bonding with nanoadhesive layers deposited by initiated chemical vapor deposition (iCVD) enables the construction of microfluidic channels with short fabrication time and high bonding strength. The high mechanical strength of parylene allows less channel deformation from the internal pressure for the thin-film parylene channel than bulk PDMS channel. At the same time, negligible channel sagging or collapse is observed during channel bending down to a few hundreds of micrometers due to stress relaxation by prestretch structure. The flexible parylene channels are also developed into a rollable microfluidic system. In a rollable microfluidics format, 2D parylene channels can be rolled around a capillary tubing working as inlets to minimize the device footprint. In addition, we show that creating reconfigurable 3D channel geometry with microscale bending radius can lead to tunable device function: tunable Dean-flow mixer is demonstrated using reconfigurable microscale 3D curved channel. Flexible parylene microfluidics with microscale bending radius is expected to provide an important breakthrough for many fields including wearable biosensors and tunable 3D microfluidics

    Thermally Fast-Curable, “Sticky” Nanoadhesive for Strong Adhesion on Arbitrary Substrates

    Full text link
    Demand of adhesives that are strong but ultrathin with high flexibility, optical transparency, and long-term stability has been rapidly growing recently. Here, we suggest a thermally curable, “sticky” nanoadhesive with outstanding adhesion strength accomplished by single-side deposition of the nanoadhesive on arbitrary substrates. The sticky nanoadhesive is composed of an ionic copolymer film generated from two acrylate monomers with tertiary amine and alkyl halide functionalities, formed by a solvent-free method, initiated chemical vapor deposition (iCVD). Because of the low glass transition temperature (<i>T</i><sub>g</sub>) of the copolymer (−9 °C), the ionic copolymer shows a viscoelastic behavior that makes the adhesive attachable to various substrates, regardless of the substrate materials. Moreover, the copolymer film is thermally curable via a cross-linking reaction between the alkyl halide and tertiary amine functionalities, which substantially increased the adhesion strength of the 500 nm thick nanoadhesive greater than 25 N/25 mm within 5 min of curing at 120 °C. The adhesive thickness can further be reduced to 50 nm to achieve greater than 35 N/25 mm within 30 min at 120 °C. The nanoadhesive layer can form uniform adhesion in a large area substrate (up to 130 × 100 mm<sup>2</sup>) with the deposition of the adhesive only on one side of the substrates to be laminated. Because of its ultrathin nature, the nanoadhesive is also optically transparent as well as highly flexible, which will play a critical role in fabrication and the lamination of future flexible/wearable devices

    Thermally Fast-Curable, “Sticky” Nanoadhesive for Strong Adhesion on Arbitrary Substrates

    Full text link
    Demand of adhesives that are strong but ultrathin with high flexibility, optical transparency, and long-term stability has been rapidly growing recently. Here, we suggest a thermally curable, “sticky” nanoadhesive with outstanding adhesion strength accomplished by single-side deposition of the nanoadhesive on arbitrary substrates. The sticky nanoadhesive is composed of an ionic copolymer film generated from two acrylate monomers with tertiary amine and alkyl halide functionalities, formed by a solvent-free method, initiated chemical vapor deposition (iCVD). Because of the low glass transition temperature (<i>T</i><sub>g</sub>) of the copolymer (−9 °C), the ionic copolymer shows a viscoelastic behavior that makes the adhesive attachable to various substrates, regardless of the substrate materials. Moreover, the copolymer film is thermally curable via a cross-linking reaction between the alkyl halide and tertiary amine functionalities, which substantially increased the adhesion strength of the 500 nm thick nanoadhesive greater than 25 N/25 mm within 5 min of curing at 120 °C. The adhesive thickness can further be reduced to 50 nm to achieve greater than 35 N/25 mm within 30 min at 120 °C. The nanoadhesive layer can form uniform adhesion in a large area substrate (up to 130 × 100 mm<sup>2</sup>) with the deposition of the adhesive only on one side of the substrates to be laminated. Because of its ultrathin nature, the nanoadhesive is also optically transparent as well as highly flexible, which will play a critical role in fabrication and the lamination of future flexible/wearable devices

    Initiated Chemical Vapor Deposition (iCVD) of Highly Cross<i>-</i>Linked Polymer Films for Advanced Lithium-Ion Battery Separators

    Full text link
    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting

    Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High‑<i>k</i>, Ultrathin Polymer Gate Dielectrics

    Full text link
    A series of high-<i>k</i>, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di­(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (<i>k</i>) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10<sup>–8</sup> A/cm<sup>2</sup> in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-<i>k</i> dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-<i>k</i> organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics

    Robust Thin Film Surface with a Selective Antibacterial Property Enabled via a Cross-Linked Ionic Polymer Coating for Infection-Resistant Medical Applications

    Full text link
    Fabrication of new antibacterial surfaces has become a primary strategy for preventing device-associated infections (DAIs). Although considerable progress has recently been made in reducing DAIs, current antibacterial coating methods are technically complex and do not allow selective bacterial killing. Here, we propose novel anti-infective surfaces made of a cross-linked ionic polymer film that achieve selective bacteria killing while simultaneously favoring the survival of mammalian cells. A one-step polymerization process known as initiated chemical vapor deposition was used to generate a cross-linked ionic polymer film from 4-vinylbenzyl chloride and 2-(dimethylamino) ethyl methacrylate monomers in the vapor phase. In particular, the deposition process produced a polymer network with quaternary ammonium cross-linking sites, which provided the surface with an ionic moiety with an excellent antibacterial contact-killing property. This method confers substrate compatibility, which enables various materials to be coated with ionic polymer films for use in medical implants. Moreover, the ionic polymer-deposited surfaces supported the healthy growth of mammalian cells while selectively inhibiting bacterial growth in coculture models without any detectable cytotoxicity. Thus, the cross-linked ionic polymer-based antibacterial surface developed in this study can serve as an ideal platform for biomedical applications that require a highly sterile environment

    Surface-Localized Sealing of Porous Ultralow‑<i>k</i> Dielectric Films with Ultrathin (<2 nm) Polymer Coating

    Full text link
    Semiconductor integrated circuit chip industries have been striving to introduce porous ultralow-<i>k</i> (ULK) dielectrics into the multilevel interconnection process in order to improve their chip operation speed by reducing capacitance along the signal path. To date, however, highly porous ULK dielectrics (porosity >40%, dielectric constant (<i>k</i>) <2.4) have not been successfully adopted in real devices because the porous nature causes many serious problems, including noncontinuous barrier deposition, penetration of the barrier metal, and reliability issues. Here, a method that allows porous ULK dielectrics to be successfully used with a multilevel interconnection scheme is presented. The surface of the porous ULK dielectric film (<i>k</i> = 2.0, porosity ∼47%) could be completely sealed by a thin (<2 nm) polymer deposited by a multistep initiated chemical vapor deposition (iCVD) process. Using the iCVD process, a thin pore-sealing layer was localized only to the surface of the porous ULK dielectric film, which could minimize the increase of <i>k</i>; the final effective <i>k</i> was less than 2.2, and the penetration of metal barrier precursors into the dielectric film was completely blocked. The pore-sealed ULK dielectric film also exhibited excellent long-term reliability comparable to a dense low-<i>k</i> dielectric film

    Series of Liquid Separation System Made of Homogeneous Copolymer Films with Controlled Surface Wettability

    Full text link
    Exquisite surface wettability control of separation system surface is required to achieve separation of liquids with low surface tension difference. Here, we demonstrate a series of surface-energy-controlled homogeneous copolymer films to control the surface wettability of polyester fabric, utilizing a vapor-phase process, termed as initiated chemical vapor deposition (iCVD). The homogeneous copolymer films consist of a hydrophobic polymer, poly­(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane), pV4D4, and a hydrophilic polymer, poly­(4-vinylpyridine), p4VP. Because the mixing of two or more components is always favorable in vapor phase, the iCVD process allows the formation of homogeneous copolymers from two immiscible, hydrophilic/hydrophobic monomer pairs, which is highly challenging to achieve in liquid phase. Simply by tuning the flow rate ratio of monomer pairs, a series of homogeneous copolymers with systematically controlled surface energy were formed successfully. The fabricated separation system could separate water (surface energy = 72.8 mJ/m<sup>2</sup>), glycerol (64 mJ/m<sup>2</sup>), ethylene glycol (48 mJ/m<sup>2</sup>), and olive oil (35.1 mJ/m<sup>2</sup>) sequentially with excellent selectivity, just by choosing a copolymer-coated polyester fabric with proper surface energy. Considering the small differences in the surface tension of the liquids used in this work, the surface-energy-controlled separation system can be a powerful tool to separate various kinds of liquid mixtures

    Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition

    Full text link
    Resistive random access memory based on polymer thin films has been developed as a promising flexible nonvolatile memory for flexible electronic systems. Memory plays an important role in all modern electronic systems for data storage, processing, and communication; thus, the development of flexible memory is essential for the realization of flexible electronics. However, the existing solution-processed, polymer-based RRAMs have exhibited serious drawbacks in terms of the uniformity, electrical stability, and long-term stability of the polymer thin films. Here, we present poly­(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3)-based RRAM arrays fabricated via the solvent-free technique called initiated chemical vapor deposition (iCVD) process for flexible memory application. Because of the outstanding chemical stability of pV3D3 films, the pV3D3-RRAM arrays can be fabricated by a conventional photolithography process. The pV3D3-RRAM on flexible substrates showed unipolar resistive switching memory with an on/off ratio of over 10<sup>7</sup>, stable retention time for 10<sup>5</sup> s, excellent cycling endurance over 10<sup>5</sup> cycles, and robust immunity to mechanical stress. In addition, pV3D3-RRAMs showed good uniformity in terms of device-to-device distribution. The pV3D3-RRAM will pave the way for development of next-generation flexible nonvolatile memory devices
    corecore