12,407 research outputs found

    Degrees of Freedom of Full-Duplex Multiantenna Cellular Networks

    Full text link
    We study the degrees of freedom (DoF) of cellular networks in which a full duplex (FD) base station (BS) equipped with multiple transmit and receive antennas communicates with multiple mobile users. We consider two different scenarios. In the first scenario, we study the case when half duplex (HD) users, partitioned to either the uplink (UL) set or the downlink (DL) set, simultaneously communicate with the FD BS. In the second scenario, we study the case when FD users simultaneously communicate UL and DL data with the FD BS. Unlike conventional HD only systems, inter-user interference (within the cell) may severely limit the DoF, and must be carefully taken into account. With the goal of providing theoretical guidelines for designing such FD systems, we completely characterize the sum DoF of each of the two different FD cellular networks by developing an achievable scheme and obtaining a matching upper bound. The key idea of the proposed scheme is to carefully allocate UL and DL information streams using interference alignment and beamforming techniques. By comparing the DoFs of the considered FD systems with those of the conventional HD systems, we establish the DoF gain by enabling FD operation in various configurations. As a consequence of the result, we show that the DoF can approach the two-fold gain over the HD systems when the number of users becomes large enough as compared to the number of antennas at the BS.Comment: 21 pages, 16 figures, a shorter version of this paper has been submitted to the IEEE International Symposium on Information Theory (ISIT) 201

    Corner effects on the perturbation of an electric potential

    Full text link
    We consider the perturbation of an electric potential due to an insulating inclusion with corners. This perturbation is known to admit a multipole expansion whose coefficients are linear combinations of generalized polarization tensors. We define new geometric factors of a simple planar domain in terms of a conformal mapping associated with the domain. The geometric factors share properties of the generalized polarization tensors and are the Fourier series coefficients of a kind of generalized external angle of the inclusion boundary. Since the generalized external angle contains the Dirac delta singularity at corner points, we can determine the criterion for the existence of corner points on the inclusion boundary in terms of the geometric factors. We illustrate and validate our results with numerical examples computed to a high degree of precision using integral equation techniques, Nystr\"om discretization, and recursively compressed inverse preconditioning.Comment: 25 pages, 6 figure
    • …
    corecore