62 research outputs found

    RSSI-Based Distance Estimation Framework Using a Kalman Filter for Sustainable Indoor Computing Environments

    No full text
    Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP) in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs) are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8% relative to the RSSI filter. This confirmed the accuracy of the proposed distance estimation framework

    Intelligent Security IT System for Detecting Intruders Based on Received Signal Strength Indicators

    No full text
    Given that entropy-based IT technology has been applied in homes, office buildings and elsewhere for IT security systems, diverse kinds of intelligent services are currently provided. In particular, IT security systems have become more robust and varied. However, access control systems still depend on tags held by building entrants. Since tags can be obtained by intruders, an approach to counter the disadvantages of tags is required. For example, it is possible to track the movement of tags in intelligent buildings in order to detect intruders. Therefore, each tag owner can be judged by analyzing the movements of their tags. This paper proposes a security approach based on the received signal strength indicators (RSSIs) of beacon-based tags to detect intruders. The normal RSSI patterns of moving entrants are obtained and analyzed. Intruders can be detected when abnormal RSSIs are measured in comparison to normal RSSI patterns. In the experiments, one normal and one abnormal scenario are defined for collecting the RSSIs of a Bluetooth-based beacon in order to validate the proposed method. When the RSSIs of both scenarios are compared to pre-collected RSSIs, the RSSIs of the abnormal scenario are about 61% more different compared to the RSSIs of the normal scenario. Therefore, intruders in buildings can be detected by considering RSSI differences

    Enhanced Reinforcement Learning Method Combining One-Hot Encoding-Based Vectors for CNN-Based Alternative High-Level Decisions

    No full text
    Gomoku is a two-player board game that originated in ancient China. There are various cases of developing Gomoku using artificial intelligence, such as a genetic algorithm and a tree search algorithm. Alpha-Gomoku, Gomoku AI built with Alpha-Go’s algorithm, defines all possible situations in the Gomoku board using Monte-Carlo tree search (MCTS), and minimizes the probability of learning other correct answers in the duplicated Gomoku board situation. However, in the tree search algorithm, the accuracy drops, because the classification criteria are manually set. In this paper, we propose an improved reinforcement learning-based high-level decision approach using convolutional neural networks (CNN). The proposed algorithm expresses each state as One-Hot Encoding based vectors and determines the state of the Gomoku board by combining the similar state of One-Hot Encoding based vectors. Thus, in a case where a stone that is determined by CNN has already been placed or cannot be placed, we suggest a method for selecting an alternative. We verify the proposed method of Gomoku AI in GuPyEngine, a Python-based 3D simulation platform

    MRBERT: Pre-Training of Melody and Rhythm for Automatic Music Generation

    No full text
    Deep learning technology has been extensively studied for its potential in music, notably for creative music generation research. Traditional music generation approaches based on recurrent neural networks cannot provide satisfactory long-distance dependencies. These approaches are typically designed for specific tasks, such as melody and chord generation, and cannot generate diverse music simultaneously. Pre-training is used in natural language processing to accomplish various tasks and overcome the limitation of long-distance dependencies. However, pre-training is not yet widely used in automatic music generation. Because of the differences in the attributes of language and music, traditional pre-trained models utilized in language modeling cannot be directly applied to music fields. This paper proposes a pre-trained model, MRBERT, for multitask-based music generation to learn melody and rhythm representation. The pre-trained model can be applied to music generation applications such as web-based music composers that includes the functions of melody and rhythm generation, modification, completion, and chord matching after being fine-tuned. The results of ablation experiments performed on the proposed model revealed that under the evaluation metrics of HITS@k, the pre-trained MRBERT considerably improved the performance of the generation tasks by 0.09–13.10% and 0.02–7.37%, compared to the usage of RNNs and the original BERT, respectively

    Traffic Accident Detection Method Using Trajectory Tracking and Influence Maps

    No full text
    With the development of artificial intelligence, techniques such as machine learning, object detection, and trajectory tracking have been applied to various traffic fields to detect accidents and analyze their causes. However, detecting traffic accidents using closed-circuit television (CCTV) as an emerging subject in machine learning remains challenging because of complex traffic environments and limited vision. Traditional research has limitations in deducing the trajectories of accident-related objects and extracting the spatiotemporal relationships among objects. This paper proposes a traffic accident detection method that helps to determine whether each frame shows accidents by generating and considering object trajectories using influence maps and a convolutional neural network (CNN). The influence maps with spatiotemporal relationships were enhanced to improve the detection of traffic accidents. A CNN is utilized to extract latent representations from the influence maps produced by object trajectories. Car Accident Detection and Prediction (CADP) was utilized in the experiments to train our model, which achieved a traffic accident detection accuracy of approximately 95%. Thus, the proposed method attained remarkable results in terms of performance improvement compared to methods that only rely on CNN-based detection

    Hybrid Traffic Accident Classification Models

    No full text
    Traffic closed-circuit television (CCTV) devices can be used to detect and track objects on roads by designing and applying artificial intelligence and deep learning models. However, extracting useful information from the detected objects and determining the occurrence of traffic accidents are usually difficult. This paper proposes a CCTV frame-based hybrid traffic accident classification model that enables the identification of whether a frame includes accidents by generating object trajectories. The proposed model utilizes a Vision Transformer (ViT) and a Convolutional Neural Network (CNN) to extract latent representations from each frame and corresponding trajectories. The fusion of frame and trajectory features was performed to improve the traffic accident classification ability of the proposed hybrid method. In the experiments, the Car Accident Detection and Prediction (CADP) dataset was used to train the hybrid model, and the accuracy of the model was approximately 97%. The experimental results indicate that the proposed hybrid method demonstrates an improved classification performance compared to traditional models

    INCO-GAN: Variable-Length Music Generation Method Based on Inception Model-Based Conditional GAN

    No full text
    Deep learning has made significant progress in the field of automatic music generation. At present, the research on music generation via deep learning can be divided into two categories: predictive models and generative models. However, both categories have the same problems that need to be resolved. First, the length of the music must be determined artificially prior to generation. Second, although the convolutional neural network (CNN) is unexpectedly superior to the recurrent neural network (RNN), CNN still has several disadvantages. This paper proposes a conditional generative adversarial network approach using an inception model (INCO-GAN), which enables the generation of complete variable-length music automatically. By adding a time distribution layer that considers sequential data, CNN considers the time relationship in a manner similar to RNN. In addition, the inception model obtains richer features, which improves the quality of the generated music. In experiments conducted, the music generated by the proposed method and that by human composers were compared. High cosine similarity of up to 0.987 was achieved between the frequency vectors, indicating that the music generated by the proposed method is very similar to that created by a human composer

    End-To-End Controls Using K-Means Algorithm for 360-Degree Video Control Method on Omnidirectional Camera-Equipped Autonomous Micro Unmanned Aircraft Systems

    No full text
    Micro unmanned aircraft systems (micro UAS)-related technical research is important because micro UAS has the advantage of being able to perform missions remotely. When an omnidirectional camera is mounted, it captures all surrounding areas of the micro UAS. Normal field of view (NFoV) refers to a view presented as an image to a user in a 360-degree video. The 360-degree video is controlled using an end-to-end controls method to automatically provide the user with NFoVs without the user controlling the 360-degree video. When using the end-to-end controls method that controls 360-degree video, if there are various signals that control the 360-degree video, the training of the deep learning model requires a considerable amount of training data. Therefore, there is a need for a method of autonomously determining the signals to reduce the number of signals for controlling the 360-degree video. This paper proposes a method to autonomously determine the output to be used for end-to-end control-based deep learning model to control 360-degree video for micro UAS controllers. The output of the deep learning model to control 360-degree video is automatically determined using the K-means algorithm. Using a trained deep learning model, the user is presented with NFoVs in a 360-degree video. The proposed method was experimentally verified by providing NFoVs wherein the signals that control the 360-degree video were set by the proposed method and by user definition. The results of training the convolution neural network (CNN) model using the signals to provide NFoVs were compared, and the proposed method provided NFoVs similar to NFoVs of existing user with 24.4% more similarity compared to a user-defined approach
    corecore