59 research outputs found

    Cross-calibration of the Siemens mMR:easily acquired accurate PET phantom measurements, long-term stability and reproducibility

    Get PDF
    BACKGROUND: We present a quick and easy method to perform quantitatively accurate PET scans of typical water-filled PET plastic shell phantoms on the Siemens Biograph mMR PET/MR system. We perform regular cross-calibrations (Xcal) of our PET systems, including the PET/MR, using a Siemens mCT water phantom. LONG-TERM STABILITY: The mMR calibration stability was evaluated over a 3-year period where 54 cross-calibrations were acquired, showing that the mMR on average underestimated the concentration by 16 %, consistently due to the use of MR-based μ-maps. The mMR produced the narrowest calibration ratio range with the lowest standard deviation, implying it is the most stable of the six systems in the study over a 3-year period. MMR ACCURACY WITH PREDEFINED μ-MAPS: With the latest mMR software version, VB20P, it is possible to utilize predefined phantom μ-maps. We evaluated both the system-integrated, predefined μ-map of the long mMR water phantom and our own user-defined CT-based μ-map of the mCT water phantom, which is used for cross-calibration. For seven scans, which were reconstructed with correctly segmented μ-maps, the mMR produced cross-calibration ratios of 1.00–1.02, well within the acceptance range [0.95–1.05], showing high accuracy. CONCLUSIONS: The mMR is the most stable PET system in this study, and the mean underestimation is no longer an issue with the easily accessible μ-map, which resulted in correct cross-calibration ratios in all seven tests. We will share the user-defined μ-map of the mCT phantom and the protocol with interested mMR users

    Dental artifacts in the head and neck region::implications for Dixon-based attenuation correction in PET/MR

    Get PDF
    BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-AC(DIXON) or MR-AC(INPAINTED) where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40658-015-0112-5) contains supplementary material, which is available to authorized users

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore