15 research outputs found
Analysis and modeling of high temporal resolution spectroscopic observations of flares on AD Leo
We report the results of a high temporal resolution spectroscopic monitoring
of the flare star AD Leo. During 4 nights, more than 600 spectra were taken in
the optical range using the Isaac Newton Telescope (INT) and the Intermediate
Dispersion Spectrograph (IDS). We have observed a large number of short and
weak flares occurring very frequently (flare activity > 0.71 hours-1). This is
in favour of the very important role that flares can play in stellar coronal
heating. The detected flares are non white-light flares and, though most of
solar flares belong to this kind, very few such events had been previously
observed on stars. The behaviour of different chromospheric lines (Balmer
series from H_alpha to H_11, Ca II H & K, Na I D_1 & D_2, He I 4026 AA and He I
D_3) has been studied in detail for a total of 14 flares. We have also
estimated the physical parameters of the flaring plasma by using a procedure
which assumes a simplified slab model of flares. All the obtained physical
parameters are consistent with previously derived values for stellar flares,
and the areas - less than 2.3% of the stellar surface - are comparable with the
size inferred for other solar and stellar flares. Finally, we have studied the
relationships between the physical parameters and the area, duration, maximum
flux and energy released during the detected flares.Comment: Latex file with 17 pages, 11 figures. Available at
http://www.ucm.es/info/Astrof/invest/actividad/actividad_pub.html Accepted
for publication in: Astronomy & Astrophysics (A&A