2,196 research outputs found
Performance Analysis of Physical Layer Network Coding for Two-way Relaying over Non-regenerative Communication Satellites
Two-way relaying is one of the major applications of broadband communication
satellites, for which an efficient technique is Physical Layer Network Coding
(PLNC). Earlier studies have considered satellites employing PLNC with onboard
processing. This paper investigates the performance of PLNC over
non-regenerative satellites, as a majority of the operational and planned
satellites have no onboard processing. Assuming that the channel magnitudes of
the two users are equal, two operating conditions are considered with
uncoded-QPSK relaying. In the first condition, both users are completely
synchronized in phase and transmit power, and in the second condition, phase is
not synchronized. The peak power constraint imposed by the satellite amplifier
is considered and the error performance bounds are derived for both the
conditions. The simulation results for end-to-end Bit Error Rate (BER) and
throughput are provided. These results shall enable communication system
designers to decide system parameters like power and linearity, and perform
tradeoff analysis between different relaying schemes.Comment: 9 pages and 13 figure
Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks
Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a
co-located multiple antenna setting need not be SSD in a distributed
cooperative communication setting. A relay network with N relays and a single
source-destination pair is called a partially-coherent relay channel (PCRC) if
the destination has perfect channel state information (CSI) of all the channels
and the relays have only the phase information of the source-to-relay channels.
In this paper, first, a new set of necessary and sufficient conditions for a
STBC to be SSD for co-located multiple antenna communication is obtained. Then,
this is extended to a set of necessary and sufficient conditions for a
distributed STBC (DSTBC) to be SSD for a PCRC, by identifying the additional
conditions. Using this, several SSD DSTBCs for PCRC are identified among the
known classes of STBCs. It is proved that even if a SSD STBC for a co-located
MIMO channel does not satisfy the additional conditions for the code to be SSD
for a PCRC, single-symbol decoding of it in a PCRC gives full-diversity and
only coding gain is lost. It is shown that when a DSTBC is SSD for a PCRC, then
arbitrary coordinate interleaving of the in-phase and quadrature-phase
components of the variables does not disturb its SSD property for PCRC.
Finally, it is shown that the possibility of {\em channel phase compensation}
operation at the relay nodes using partial CSI at the relays increases the
possible rate of SSD DSTBCs from when the relays do not have CSI
to 1/2, which is independent of N
Wireless Bidirectional Relaying using Physical Layer Network Coding with Heterogeneous PSK Modulation
In bidirectional relaying using Physical Layer Network Coding (PLNC), it is
generally assumed that users employ same modulation schemes in the Multiple
Access phase. However, as observed by Zhang et al., it may not be desirable for
the users to always use the same modulation schemes, particularly when
user-relay channels are not equally strong. Such a scheme is called
Heterogeneous PLNC. However, the approach in [1] uses the computationally
intensive Closest Neighbour Clustering (CNC) algorithm to find the network
coding maps to be applied at the relay. Also, the treatment is specific to
certain cases of heterogeneous modulations. In this paper, we show that, when
users employ heterogeneous but symmetric PSK modulations, the network coding
maps and the mapping regions in the fade state plane can be obtained
analytically. Performance results are provided in terms of Relay Error Rate
(RER) and Bit Error Rate (BER).Comment: 10 pages, 10 figures and 3 table
Tides in the Mandovi and Zuari estuaries, Goa, west coast of India
Mandovi and Zuari are two estuaries located in Goa, west coast of India. Variation of water level in the estuaries was monitored for a month at 13 locations using tide-poles during March-April 2003. Analysis of this data has provided for the first time, characteristics of how tidal constituents vary in the narrow and shallow estuaries, typical of those found along the west coast of India. At a distance of 45 km from the mouth the tidal range increased in both estuaries by approximately 20%. The tidal range at the upstream end of the two channels at the stations dropped sharply because of the increase in elevation of the channels
Numerical Simulation of Waves and Calculation of Hydrodynamic characteristics Over different seawalls
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Biopolymeric Mucin and Synthetic Polymer Analogs: Their Structure, Function and Role in Biomedical Applications
Mucin networks are viscoelastic fibrillar aggregates formed through the complex self-association of biopolymeric glycoprotein chains. The networks form a lubricious, hydrated protective shield along epithelial regions within the human body. The critical role played by mucin networks in impacting the transport properties of biofunctional molecules (e.g., biogenic molecules, probes, nanoparticles), and its effect on bioavailability are well described in the literature. An alternate perspective is provided in this paper, presenting mucin’s complex network structure, and its interdependent functional characteristics in human physiology. We highlight the recent advances that were achieved through the use of mucin in diverse areas of bioengineering applications (e.g., drug delivery, biomedical devices and tissue engineering). Mucin network formation is a highly complex process, driven by wide variety of molecular interactions, and the network possess structural and chemical variations, posing a great challenge to understand mucin’s bulk behavior. Through this review, the prospective potential of polymer based analogs to serve as mucin mimic is suggested. These analog systems, apart from functioning as an artificial model, reducing the current dependency on animal models, can aid in furthering our fundamental understanding of such complex structures
Cost-Effectiveness Analysis of Combination Therapies for Visceral Leishmaniasis in the Indian Subcontinent
Visceral leishmaniasis (VL) is a serious health problem in the Indian subcontinent affecting the rural poor. It has a significant economic impact on concerned households. The development of drug resistance is a major problem and threatens control efforts under the VL elimination initiative. With an unprecedented choice of antileishmanial drugs (but no newer compound in clinical development), policies that protect these drugs against the emergence of resistance are required. A possible strategy that has been successfully used for malaria and tuberculosis is the use of combination therapies. This study is the first comprehensive assessment of the cost-effectiveness of all possible mono- and combination therapies for the treatment of visceral leishmaniasis in the Indian subcontinent. The analysis was done from the societal perspective, including both health provider and household costs. The present work shows that combination treatments are a cost-effective alternative to current monotherapy for VL. Given their expected impact on emergence of drug resistance, the use of combination therapy should be considered in the context of the VL elimination programme in the Indian subcontinent
- …