96,794 research outputs found
Recommended from our members
Precision Extrusion Deposition of Polycaprolactone/Hydroxyapatite Tissue Scaffolds
Freeform fabrication provides an effective process tool to manufacture advanced tissue scaffolds
with specific designed properties. Our research focuses on using a novel Precision Extrusion
Deposition (PED) process technique to directly fabricate Polycaprolactone (PCL) and composite
PCL/ Hydroxyapatite (HA) tissue scaffolds. The scaffold morphology and the mechanical
properties were evaluated using SEM and mechanical testing. In vitro biological studies were
conducted to investigate the cellular responses of the composite scaffolds. Results and
characterizations demonstrate the viability of the PED process as well as the good mechanical
property, structural integrity, controlled pore size, pore interconnectivity, and the biological
compatibility of the fabricated scaffolds.Mechanical Engineerin
Recommended from our members
A Preliminary Study on Using Multi-Nozzle Polymer Deposition System to Fabricate Composite Alginate/Carbon Nanotube Tissue Scaffolds
Three-dimensional composite alginate/single wall carbon nanotube (SWCNT) scaffolds
encapsulated with endothelial cells were fabricated by a multi-nozzle biopolymer freeform
deposition system. This system enables the converting of CAD designed scaffold pattern into
process toolpaths and the use of computer control program to guide the nozzle deposition at
spatial position for layered fabrication of 3D tissue scaffolds. The morphological, mechanical,
structural and biological properties of as-fabricated scaffolds were characterized by optical
microscope, SEM, Microtensile testing machine, Alamar Blue Assay, and Live-Dead Assay,
respectively. The multi-nozzle deposition system demonstrated a highly efficient and effective
process to build tissue scaffold or cell embedded constructs. Characterization results showed that
the incorporation of SWCNT into alginate not only enhanced the mechanical strength of the
scaffolds but also improved the cell affinity and the interaction with substrate. Further cell
culture experimental results also showed that the incorporation of SWCNT in alginate enhanced
endothelial cell proliferation compared with pure alginate scaffold.Mechanical Engineerin
Recommended from our members
Multi-Nozzle Biopolymer Deposition for Freeform Fabrication of Tissue Constructs
Advanced freeform fabrication techniques have been recently used for the construction of tissue
scaffolds because of the process repeatability and capability of high accuracy in fabrication
resolution at the macro and micro scales. Among many applicable tissue scaffolding materials,
polymeric materials have unique properties in terms of the biocompatibility and degradation, and
have thus been widely utilized in tissue engineering applications. Hydrogels, such as alginate,
has been one of the most important polymer scaffolding materials because of its biocompatibility
and internal structure similarity to that of the extracellular matrix of many tissues, and its
relatively moderate processing. Three-dimensional deposition has been an entreating freeform
fabrication method of biopolymer and particularly hydrogel scaffolds because of its readiness to
deposit fluids at ambient temperatures. This paper presents a recent development of biopolymer
deposition based freeform fabrication for 3-diemnsinal tissue scaffolds. The system
configuration of multi-nozzles used in the deposition of sodium alginate solutions and Poly-?-
Caprolactone (PCL) are described. Studies on polymer deposition feasibility and structural
formability are conducted, and the preliminary results are presented.Mechanical Engineerin
Substrate effects on quasiparticles and excitons in graphene nanoflakes
The effects of substrate on electronic and optical properties of triangular
and hexagonal graphene nanoflakes with armchair edges are investigated by using
a configuration interaction approach beyond double excitation scheme. The
quasiparticle correction to the energy gap and exciton binding energy are found
to be dominated by the long-range Coulomb interactions and exhibit similar
dependence on the dielectric constant of the substrate, which leads to a
cancellation of their contributions to the optical gap. As a result, the
optical gaps are shown to be insensitive to the dielectric environment and
unexpectedly close to the single-particle gaps.Comment: 4 pages, 4 figure
Dipolar effect in coherent spin mixing of two atoms in a single optical lattice site
We show that atomic dipolar effects are detectable in the system that
recently demonstrated two-atom coherent spin dynamics within individual lattice
sites of a Mott state. Based on a two-state approximation for the two-atom
internal states and relying on a variational approach, we have estimated the
spin dipolar effect. Despite the absolute weakness of the dipole-dipole
interaction, it is shown that it leads to experimentally observable effects in
the spin mixing dynamics.Comment: 4 pages, 3 color eps figures, to appear in Phys. Rev. Let
Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China
Understanding the geochemical cycling of sulfur in sediments is important because it can have implications for both modern environments (e.g., deterioration of water quality) and interpretation of the ancient past (e.g., sediment C/S ratios can be used as indicators of palaeodepositional environment). This study investigates the geochemical characteristics of sulfur, iron, and organic carbon in fluvial and coastal surface sediments of the Laizhou Bay region, China. A total of 63 sediment samples were taken across the whole Laizhou Bay marine region and the 14 major tidal rivers draining into it. Acid volatile sulfur, chromium (II)-reducible sulfur and elemental sulfur, total organic carbon, and total nitrogen were present in higher concentrations in the fluvial sediment than in the marine sediment of Laizhou Bay. The composition of reduced inorganic sulfur in surface sediments was dominated by acid volatile sulfur and chromium (II)-reducible sulfur. In fluvial sediments, sulfate reduction and formation of reduced inorganic sulfur were controlled by TOC and reactive iron synchronously. High C/S ratios in the marine sediments indicate that the diagenetic processes in Laizhou Bay have been affected by rapid deposition of sediment from the Yellow River in recent decades
A simulation study of two major events in the heliosphere during the present sunspot cycle
The two major disturbances in the heliosphere during the present sunspot cycle, the event of June to August, 1982, and the event of April to June, 1978, are simulated by the method developed by Hakamada and Akasofu (1982). Specifically, an attempt was made to simulate the effects of six major flares from three active regions in June and July, 1982, and April and May, 1978. A comparison of the results with the solar wind observations at Pioneer 12 (approximately 0.8 au), ISEE-3 (approximately 1 au), Pioneer 11 (approximately 7 to 13 au) and Pioneer 10 (approximately 16 to 28 au) suggests that some major flares occurred behind the disk of the sun during the two periods. The method provides qualitatively some information as to how such a series of intense solar flares can greatly disturb both the inner and outer heliospheres. A long lasting effect on cosmic rays is discussed in conjunction with the disturbed heliosphere
- …