180,384 research outputs found
A concentrator for static magnetic field
We propose a compact passive device as a super-concentrator to create an
extremely high uniform static magnetic field over 50T in a large
two-dimensional free space from a weak background magnetic field. Such an
amazing thing becomes possible for the first time, thanks to space-folded
transformation and metamaterials for static magnetic fields. Finite element
method (FEM) is utilized to verify the performance of the proposed device
Transforming magnets
Based on the form-invariant of Maxwell's equations under coordinate
transformations, we extend the theory of transformation optics to
transformation magneto-statics, which can design magnets through coordinate
transformations. Some novel DC magnetic field illusions created by magnets
(e.g. shirking magnets, cancelling magnets and overlapping magnets) are
designed and verified by numerical simulations. Our research will open a new
door to designing magnets and controlling DC magnetic fields
A potential approach to solutions for set games
Concerning the solution theory for set games, the paper introduces a new solution by allocating, to any player, the items (taken from an universe) that are attainable for the player, but can not be blocked (by any coalition not containing the player). The resulting value turns out to be an utmost important concept for set games to characterize the family of set game solutions that possess a so-called potential representation (similar to the potential approaches applied in both physics and cooperative game theory). An axiomatization of the new value, called Driessen--Sun value, is given by three properties, namely one type of an efficiency property, the substitution property and one type of a monotonocity property
Observing collapse in two colliding dipolar Bose-Einstein condensates
We study the collision of two Bose-Einstein condensates with pure dipolar
interaction. A stationary pure dipolar condensate is known to be stable when
the atom number is below a critical value. However, collapse can occur during
the collision between two condensates due to local density fluctuations even if
the total atom number is only a fraction of the critical value. Using full
three-dimensional numerical simulations, we observe the collapse induced by
local density fluctuations. For the purpose of future experiments, we present
the time dependence of the density distribution, energy per particle and the
maximal density of the condensate. We also discuss the collapse time as a
function of the relative phase between the two condensates.Comment: 6 pages, 7 figure
Evaluating methods for controlling depth perception in stereoscopic cinematography.
Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games
Dynamics of a two-species Bose-Einstein condensate in a double well
We study the dynamics of a two-species Bose-Einstein condensate in a double
well. Such a system is characterized by the intraspecies and interspecies
s-wave scattering as well as the Josephson tunneling between the two wells and
the population transfer between the two species. We investigate the dynamics
for some interesting regimes and present numerical results to support our
conclusions. In the case of vanishing intraspecies scattering lengths and a
weak interspecies scattering length, we find collapses and revivals in the
population dynamics. A possible experimental implementation of our proposal is
briefly discussed.Comment: 7 pages, 5 figure
Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing
Multiple-input multiple-output (MIMO) systems are well suited for
millimeter-wave (mmWave) wireless communications where large antenna arrays can
be integrated in small form factors due to tiny wavelengths, thereby providing
high array gains while supporting spatial multiplexing, beamforming, or antenna
diversity. It has been shown that mmWave channels exhibit sparsity due to the
limited number of dominant propagation paths, thus compressed sensing
techniques can be leveraged to conduct channel estimation at mmWave
frequencies. This paper presents a novel approach of constructing beamforming
dictionary matrices for sparse channel estimation using the continuous basis
pursuit (CBP) concept, and proposes two novel low-complexity algorithms to
exploit channel sparsity for adaptively estimating multipath channel parameters
in mmWave channels. We verify the performance of the proposed CBP-based
beamforming dictionary and the two algorithms using a simulator built upon a
three-dimensional mmWave statistical spatial channel model, NYUSIM, that is
based on real-world propagation measurements. Simulation results show that the
CBP-based dictionary offers substantially higher estimation accuracy and
greater spectral efficiency than the grid-based counterpart introduced by
previous researchers, and the algorithms proposed here render better
performance but require less computational effort compared with existing
algorithms.Comment: 7 pages, 5 figures, in 2017 IEEE International Conference on
Communications Workshop (ICCW), Paris, May 201
A uniform approach to semi-marginalistic values for set games
Concerning the solution theory for set games, the paper focuses on a family of solutions, each of which allocates to any player some type of marginalistic contribution with respect to any coalition containing the player. Here the marginalistic contribution may be interpreted as an individual one, or a coalitionally one. For any value of the relevant family, an axiomatization is given by three properties, namely one type of an efficiency property, the substitution property and one type of a monotonocity property. We present two proof techniques, each of which is based on the decomposition of any arbitrary set game into a union of either simple set games or elementary set games, the solutions of which are much easier to determine. A simple respectively elementary set game is associated with an arbitrary, but fixed item of the universe respectively coalition
Multi-view Regularized Gaussian Processes
Gaussian processes (GPs) have been proven to be powerful tools in various
areas of machine learning. However, there are very few applications of GPs in
the scenario of multi-view learning. In this paper, we present a new GP model
for multi-view learning. Unlike existing methods, it combines multiple views by
regularizing marginal likelihood with the consistency among the posterior
distributions of latent functions from different views. Moreover, we give a
general point selection scheme for multi-view learning and improve the proposed
model by this criterion. Experimental results on multiple real world data sets
have verified the effectiveness of the proposed model and witnessed the
performance improvement through employing this novel point selection scheme
- …