7,041 research outputs found

    Effects and treatment methods of acupuncture and herbal medicine for premenstrual syndrome/premenstrual dysphoric disorder: systematic review

    Get PDF
    BACKGROUND: During their reproductive years about 10% of women experience some kind of symptoms before menstruation (PMS) in a degree that affects their quality of life (QOL). Acupuncture and herbal medicine has been a recent favorable therapeutic approach. Thus we aimed to review the effects of acupuncture and herbal medicine in the past decade as a preceding research in order to further investigate the most effective Korean Medicine treatment for PMS/PMDD. METHODS: A systematic literature search was conducted using electronic databases on studies published between 2002 and 2012. Our review included randomized controlled clinical trials (RCTs) of acupuncture and herbal medicine for PMS/PMDD. Interventions include acupuncture or herbal medicine. Clinical information including statistical tests was extracted from the articles and summarized in tabular form or in the text. Study outcomes were presented as the rate of improvement (%) and/or end-of-treatment scores. RESULTS: The search yielded 19 studies. In screening the RCTs, 8 studies in acupuncture and 11 studies in herbal medicine that matched the criteria were identified. Different acupuncture techniques including traditional acupuncture, hand acupuncture and moxibustion, and traditional acupuncture technique with auricular points, have been selected for analysis. In herbal medicine, studies on Vitex Agnus castus, Hypericum perforatum, Xiao yao san, Elsholtzia splendens, Cirsium japonicum, and Gingko biloba L. were identified. Experimental groups with Acupuncture and herbal medicine treatment (all herbal medicine except Cirsium japonicum) had significantly improved results regarding PMS/PMDD. CONCLUSIONS: Limited evidence supports the efficacy of alternative medicinal interventions such as acupuncture and herbal medicine in controlling premenstrual syndrome and premenstrual dysphoric disorder. Acupuncture and herbal medicine treatments for premenstrual syndrome and premenstrual dysphoric disorder showed a 50% or better reduction of symptoms compared to the initial state. In both acupuncture and herbal medical interventions, there have been no serious adverse events reported, proving the safety of the interventions while most of the interventions provided over 50% relief of symptoms associated with PMS/PMDD. Stricter diagnostic criteria may have excluded many participants from some studies. Also, depending on the severity of symptoms, the rate of improvement in the outcomes of the studies may have greatly differed

    Image-Object-Specific Prompt Learning for Few-Shot Class-Incremental Learning

    Full text link
    While many FSCIL studies have been undertaken, achieving satisfactory performance, especially during incremental sessions, has remained challenging. One prominent challenge is that the encoder, trained with an ample base session training set, often underperforms in incremental sessions. In this study, we introduce a novel training framework for FSCIL, capitalizing on the generalizability of the Contrastive Language-Image Pre-training (CLIP) model to unseen classes. We achieve this by formulating image-object-specific (IOS) classifiers for the input images. Here, an IOS classifier refers to one that targets specific attributes (like wings or wheels) of class objects rather than the image's background. To create these IOS classifiers, we encode a bias prompt into the classifiers using our specially designed module, which harnesses key-prompt pairs to pinpoint the IOS features of classes in each session. From an FSCIL standpoint, our framework is structured to retain previous knowledge and swiftly adapt to new sessions without forgetting or overfitting. This considers the updatability of modules in each session and some tricks empirically found for fast convergence. Our approach consistently demonstrates superior performance compared to state-of-the-art methods across the miniImageNet, CIFAR100, and CUB200 datasets. Further, we provide additional experiments to validate our learned model's ability to achieve IOS classifiers. We also conduct ablation studies to analyze the impact of each module within the architecture.Comment: 8 pages, 4 figures, 4 table

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation

    Get PDF
    The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes

    Melittin restores proteasome function in an animal model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1) in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation

    Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis

    Get PDF
    Capric acid is a second medium-chain fatty acid, and recent studies have shown that fatty acids are associated with bone density and reduce bone turnover. In this study, we investigated the effects of capric acid on lipopolysaccharide (LPS)-induced osteoclastogenesis in RAW264.7 cells. After treatment with capric acid (1 mM), the number of tartrate resistant acid phosphatase (TRAP)-positive cells decreased significantly. Capric acid reduced LPS-induced TRAP expression, an osteoclast differentiation marker, without inhibiting cell viability. LPS strongly upregulated inducible nitric oxide synthase (iNOS) mRNA levels and nitric oxide (NO) production, whereas capric acid inhibited them. Furthermore, capric acid also inhibited monocyte chemoattractant protein-1 (MCP-1) mRNA expression. Subsequently, we investigated various intracellular signaling proteins, including nuclear factor-κB (NF-κB), c-Jun-N-terminal kinase (JNK), extracellular signal regulated kinase 1/2 (ERK1/2), and signal transducer and activator of transcription 1 (STAT1) and STAT3 associated with osteoclastogenesis. Capric acid had no effects on LPS-induced activation of the NF-κB, JNK, ERK1/2, and STAT1 pathways. However, capric acid inhibited LPS-induced phosphorylation of Ser727 in STAT3. Additionally, stattic (a STAT3 inhibitor) inhibited LPS-induced iNOS and MCP-1 gene expression. In conclusion, we demonstrated that capric acid inhibited LPS-induced osteoclastogenesis by suppressing NO production via the STAT3 pathway. These results suggest that capric acid has important therapeutic implications for treating bone diseases associated with excessive osteoclastogenesis

    A Parametric Study on the Immunomodulatory Effects of Electroacupuncture in DNP-KLH Immunized Mice

    Get PDF
    This study was conducted to compare the effects of low frequency electroacupuncture (EA) and high frequency EA at acupoint ST36 on the production of IgE and Th1/Th2 cytokines in BALB/c mice that had been immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH), as well as to investigate the difference in the immunomodulatory effects exerted by EA stimulations at acupoint ST36 and at a non-acupoint (tail). Female BALB/c mice were divided into seven groups: normal (no treatments), IM (immunization only), ST36-PA (IM + plain acupuncture at ST36), ST36-LEA (IM + low frequency (1 Hz) EA at ST36), ST36-HEA (IM + high frequency (120 Hz) EA at ST36), NA-LEA (IM + low frequency (1 Hz) EA at non-acupoint) and NA-HEA (IM + high frequency (120 Hz) EA at non-acupoint). EA stimulation was performed daily for two weeks, and total IgE, DNP-KLH specific IgE, IL-4 and IFN-γ levels were measured at the end of the experiment. The results of this study showed that the IgE and IL-4 levels were significantly suppressed in the ST36-LEA and ST36-HEA groups, but not in the NA-LEA and NA-HEA groups. However, there was little difference in the immunomodulatory effects observed in the ST36-LEA and ST36-HEA groups. Taken together, these results suggest that EA stimulation-induced immunomodulation is not frequency dependent, but that it is acupoint specific
    corecore