234,520 research outputs found

    Measurements of Absolute Hadronic Branching Fractions of D Mesons

    Full text link
    Using e+e- collisions recorded at the psi(3770) resonance with the CLEO-c detector at the Cornell Electron Storage Ring, we determine absolute hadronic branching fractions of charged and neutral D mesons. Among measurements for both Cabibbo-favored and Cabibbo-suppressed modes, we obtain reference branching fractions B(D0 -> K-pi+)=(3.91 +- 0.08 +- 0.09)% and B(D+ -> K-pi+pi+)=(9.5 +- 0.2 +- 0.3)%, where the uncertainties are statistical and systematic, respectively. Using a determination of the integrated luminosity, we also extract the e+e- -> DDbar cross sections.Comment: 3 pages, to appear in the Proceedings of PANIC'05 (Particles and Nuclei International Conference), Santa Fe, NM, October 24-28 200

    Oscillation-based Test Method for Continuous-time OTA-C Filters

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”Design for testability technique using oscillation-based test topology for KHN OTA-C filters is proposed. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. During test mode, the filter under test is converted into an oscillator by establishing the oscillation condition in its transfer function. The oscillator frequency can be measured using digital circuitry and deviations from the cut-off frequency indicate the faulty behaviour of the filter. The proposed method is suitable for both catastrophic and parametric fault diagnosis as well as effective in detecting single and multiple faults. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of KHN OTA-C filter. Simulation results in 0.25mum CMOS technology show that the proposed oscillation-based test strategy has 84% fault coverage and with a minimum number of extra components, requires a negligible area overhead.Final Published versio

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    The Brownian net

    Full text link
    The (standard) Brownian web is a collection of coalescing one- dimensional Brownian motions, starting from each point in space and time. It arises as the diffusive scaling limit of a collection of coalescing random walks. We show that it is possible to obtain a nontrivial limiting object if the random walks in addition branch with a small probability. We call the limiting object the Brownian net, and study some of its elementary properties.Comment: Published in at http://dx.doi.org/10.1214/07-AOP357 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Editorial Comment on the Special Issue of "Information in Dynamical Systems and Complex Systems"

    Full text link
    This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems
    corecore