12,395 research outputs found
Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification
This paper presents a study on power grid disturbance classification by Deep
Learning (DL). A real synchrophasor set composing of three different types of
disturbance events from the Frequency Monitoring Network (FNET) is used. An
image embedding technique called Gramian Angular Field is applied to transform
each time series of event data to a two-dimensional image for learning. Two
main DL algorithms, i.e. CNN (Convolutional Neural Network) and RNN (Recurrent
Neural Network) are tested and compared with two widely used data mining tools,
the Support Vector Machine and Decision Tree. The test results demonstrate the
superiority of the both DL algorithms over other methods in the application of
power system transient disturbance classification.Comment: An updated version of this manuscript has been accepted by the 2018
IEEE International Conference on Energy Internet (ICEI), Beijing, Chin
- …