79,652 research outputs found
Floquet spin states in graphene under ac driven spin-orbit interaction
We study the role of periodically driven time-dependent Rashba spin-orbit
coupling (RSOC) on a monolayer graphene sample. After recasting the originally
system of dynamical equations as two time-reversal related
two-level problems, the quasi-energy spectrum and the related dynamics are
investigated via various techniques and approximations. In the static case the
system is a gapped at the Dirac point. The rotating wave approximation (RWA)
applied to the driven system unphysically preserves this feature, while the
Magnus-Floquet approach as well as a numerically exact evaluation of the
Floquet equation show that this gap is dynamically closed. In addition, a
sizable oscillating pattern of the out-of-plane spin polarization is found in
the driven case for states which completely unpolarized in the static limit.
Evaluation of the autocorrelation function shows that the original uniform
interference pattern corresponding to time-independent RSOC gets distorted. The
resulting structure can be qualitatively explained as a consequence of the
transitions induced by the ac driving among the static eigenstates, i.e., these
transitions modulate the relative phases that add up to give the quantum
revivals of the autocorrelation function. Contrary to the static case, in the
driven scenario, quantum revivals (suppresions) are correlated to spin up
(down) phases.Comment: 10 pages, 8 figures. Typos corrected. Accepted for publication in PR
Fast domain wall propagation under an optimal field pulse in magnetic nanowires
We investigate field-driven domain wall (DW) propagation in magnetic
nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose
a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by
using an optimal space-dependent field pulse synchronized with the DW
propagation. Depending on the damping parameter, the DW velocity can be
increased by about two orders of magnitude compared the standard case of a
static uniform field. Moreover, under the optimal field pulse, the change in
total magnetic energy in the nanowire is proportional to the DW velocity,
implying that rapid energy release is essential for fast DW propagation.Comment: 4 pages, 3 figures; updated version replace
Switching speed distribution of spin-torque-induced magnetic reversal
The switching probability of a single-domain ferromagnet under spin-current
excitation is evaluated using the Fokker-Planck equation(FPE). In the case of
uniaxial anisotropy, the FPE reduces to an ordinary differential equation in
which the lowest eigenvalue determines the slowest switching
events. We have calculated by using both analytical and numerical
methods. It is found that the previous model based on thermally distributed
initial magnetization states \cite{Sun1} can be accurately justified in some
useful limiting conditions.Comment: The 10th Joint MMM/Intermag, HA-0
Synchronization in an array of linearly stochastically coupled networks with time delays
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Elsevier LtdIn this paper, the complete synchronization problem is investigated in an array of linearly stochastically coupled identical networks with time delays. The stochastic coupling term, which can reflect a more realistic dynamical behavior of coupled systems in practice, is introduced to model a coupled system, and the influence from the stochastic noises on the array of coupled delayed neural networks is studied thoroughly. Based on a simple adaptive feedback control scheme and some stochastic analysis techniques, several sufficient conditions are developed to guarantee the synchronization in an array of linearly stochastically coupled neural networks with time delays. Finally, an illustrate example with numerical simulations is exploited to show the effectiveness of the theoretical results.This work was jointly supported by the National Natural Science Foundation of China under Grant 60574043, the Royal Society of the United Kingdom, the Natural Science Foundation of Jiangsu Province of China under Grant BK2006093, and International Joint Project funded by NSFC and the Royal Society of the United Kingdom
Graphene with time-dependent spin-orbit coupling: Truncated Magnus expansion approach
We analyze the role of ac-driven Rashba spin-orbit coupling in monolayer
graphene including a spin-dependent mass term. Using the Magnus expansion as a
semi-analytical approximation scheme a full account of the quasienergie
spectrum of spin states is given. We discuss the subtleties arising in
correctly applying the Magnus expansion technique in order to determine the
quasienergy spectrum. Comparison to the exact numerical solution gives
appropriate boundaries to the validity of the Magnus expansion solution.Comment: 8 pages, 4 figure
Binomial coefficients, Catalan numbers and Lucas quotients
Let be an odd prime and let be integers with and . In this paper we determine
mod for ; for example,
where is the Jacobi symbol, and is the Lucas
sequence given by , and for
. As an application, we determine modulo for any integer , where denotes the
Catalan number . We also pose some related conjectures.Comment: 24 pages. Correct few typo
Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction
Nanomagnetism has recently attracted explosive attention, in particular,
because of the enormous potential applications in information industry, e.g.
new harddisk technology, race-track memory[1], and logic devices[2]. Recent
technological advances[3] allow for the fabrication of single-domain magnetic
nanoparticles (Stoner particles), whose magnetization dynamics have been
extensively studied, both experimentally and theoretically, involving magnetic
fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point
of view, important issues include lowering the critical switching field ,
and achieving short reversal times. Here we predict a new technological
perspective: can be dramatically lowered (including ) by
appropriately engineering the dipole-dipole interaction (DDI) in a system of
two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW)
limit, both of the above goals can be achieved. The experimental feasibility of
realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure
- …