63,667 research outputs found
Achieving Effective Innovation Based On TRIZ Technological Evolution
Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective
Innovation is constrained on the path of technological evolution so that the corresponding path must be
detected before conceptual design of the product. The process of products technological evolution is a
technical developing process that the products approach to Ideal Final Result (IFR). During the process, the
sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential
techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan
On the nature of the lightest scalar resonances
We briefly review the recent progresses in the new unitarization approach
being developed by us. Especially we discuss the large
scatterings by making use of the partial wave matrix parametrization form.
We find that the pole may move to the negative real axis on the second
sheet of the complex plane, therefore it raises the interesting question
that this `' pole may be related to the in the linear
model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron
Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure
Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength
We construct a projection measurement process for the maximally entangled
N-photon state (the NOON-state) with only linear optical elements and
photodetectors. This measurement process will give null result for any N-photon
state that is orthogonal to the NOON state. We examine the projection process
in more detail for N=4 by applying it to a four-photon state from type-II
parametric down-conversion. This demonstrates an orthogonal projection
measurement with a null result. This null result corresponds to a dip in a
generalized Hong-Ou-Mandel interferometer for four photons. We find that the
depth of the dip in this arrangement can be used to distinguish a genuine
entangled four-photon state from two separate pairs of photons. We next apply
the NOON state projection measurement to a four-photon superposition state from
two perpendicularly oriented type-I parametric down-conversion processes. A
successful NOON state projection is demonstrated with the appearance of the
four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.
Hydrostatic pressure effects on the static magnetism in Eu(FeCo)As
The effects of hydrostatic pressure on the static magnetism in
Eu(FeCo)As are investigated by complementary
electrical resistivity, ac magnetic susceptibility and single-crystal neutron
diffraction measurements. A specific pressure-temperature phase diagram of
Eu(FeCo)As is established. The structural phase
transition, as well as the spin-density-wave order of Fe sublattice, is
suppressed gradually with increasing pressure and disappears completely above
2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the
whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic
variation with pressure. With the increase of the hydrostatic pressure, the
magnetic state of Eu evolves from the canted antiferromagnetic structure in the
ground state, via a pure ferromagnetic structure under the intermediate
pressure, finally to a possible "novel" antiferromagnetic structure under the
high pressure. The strong ferromagnetism of Eu coexists with the
pressure-induced superconductivity around 2 GPa. The change of the magnetic
state of Eu in Eu(FeCo)As upon the application
of hydrostatic pressure probably arises from the modification of the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu moments
tuned by external pressure.Comment: 9 pages, 6 figure
- …