89,235 research outputs found

    Triaxial projected shell model approach

    Get PDF
    The projected shell model analysis is carried out using the triaxial Nilsson+BCS basis. It is demonstrated that, for an accurate description of the moments of inertia in the transitional region, it is necessary to take the triaxiality into account and perform the three-dimensional angular-momentum projection from the triaxial Nilsson+BCS intrinsic wavefunction.Comment: 9 pages, 2 figure

    B/P Doping in
 application of 
silicon oxynitride based integrated
 optics

    Get PDF
    In this paper, gaseous precursors containing boron or phosphorous were intentionally introduced in the deposition of SiON layers and upper SiO2 claddings. The measurements show that the as-deposited B/P-doped SiON layers contain less hydrogen than undoped layers. Furthermore, the necessary annealing temperature for elimination of hydrogen related absorption (propagation loss) is greatly reduced in B/P-doped layers

    Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

    Full text link
    We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO1−x_{1-x}Fx_{x}. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches

    Full text link
    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at http://jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.Comment: 27 pages, 7 figures. Accepted to Solar Physic

    Chandra view of Kes 79: a nearly isothermal SNR with rich spatial structure

    Full text link
    A 30 ks \chandra ACIS-I observation of Kes 79 reveals rich spatial structures, including many filaments, three partial shells, a loop and a ``protrusion''. Most of them have corresponding radio features. Regardless of the different results from two non-equilibrium ionization (NEI) codes, temperatures of different parts of the remnant are all around 0.7 keV, which is surprisingly constant for a remnant with such rich structure. If thermal conduction is responsible for smoothing the temperature gradient, a lower limit on the thermal conductivity of ∌\sim 1/10 of the Spitzer value can be derived. Thus, thermal conduction may play an important role in the evolution of at least some SNRs. No spectral signature of the ejecta is found, which suggests the ejecta material has been well mixed with the ambient medium. From the morphology and the spectral properties, we suggest the bright inner shell is a wind-driven shell (WDS) overtaken by the blast wave (the outer shell) and estimate the age of the remnant to be ∌\sim 6 kyr for the assumed dynamics. Projection is also required to explain the complicated morphology of Kes 79.Comment: 12 pages, 6 figures (3 in color), ApJ, in press, April 20, 200
    • 

    corecore