3,144 research outputs found

    Dynamics and correlation length scales of a glass-forming liquid in quiescent and sheared conditions

    Full text link
    We numerically study dynamics and correlation length scales of a colloidal liquid in both quiescent and sheared conditions to further understand the origin of slow dynamics and dynamic heterogeneity in glass-forming systems. The simulation is performed in a weakly frustrated two-dimensional liquid, where locally preferred order is allowed to develop with increasing density. The four-point density correlations and bond-orientation correlations, which have been frequently used to capture dynamic and static length scales ξ\xi in a quiescent condition, can be readily extended to a system under steady shear in this case. In the absence of shear, we confirmed the previous findings that the dynamic slowing down accompanies the development of dynamic heterogeneity. The dynamic and static length scales increase with α\alpha-relaxation time τα\tau_{\alpha} as power-law ξταμ\xi\sim\tau_{\alpha}^{\mu} with μ>0\mu>0. In the presence of shear, both viscosity and τα\tau_{\alpha} have power-law dependence on shear rate in the marked shear thinning regime. However, dependence of correlation lengths cannot be described by power laws in the same regime. Furthermore, the relation ξταμ\xi\sim\tau_{\alpha}^{\mu} between length scales and dynamics holds for not too strong shear where thermal fluctuations and external forces are both important in determining the properties of dense liquids. Thus, our results demonstrate a link between slow dynamics and structure in glass-forming liquids even under nonequilibrium conditions.Comment: 9 pages, 17 figures. Accepted by J. Phys.: Condens. Matte

    Structure, compressibility factor and dynamics of highly size-asymmetric binary hard-disk liquids

    Full text link
    By using event-driven molecular dynamics simulation, we investigate effects of varying the area fraction of the smaller component on structure, compressibility factor and dynamics of the highly size-asymmetric binary hard-disk liquids. We find that the static pair correlations of the large disks are only weakly perturbed by adding small disks. The higher-order static correlations of the large disks, by contrast, can be strongly affected. The compressibility factor of the system first decreases and then increases upon increasing the area fraction of the small disks and separating different contributions to it allows to rationalize this non-monotonic phenomenon. Furthermore, adding small disks can influence dynamics of the system in quantitative and qualitative ways. For the large disks, the structural relaxation time increases monotonically with increasing the area fraction of the small disks at low and moderate area fractions of the large disks. In particular, "reentrant" behavior appears at sufficiently high area fractions of the large disks, strongly resembling the reentrant glass transition in short-ranged attractive colloids and the inverted glass transition in binary hard spheres with large size disparity. By tuning the area fraction of the small disks, relaxation process for the small disks shows concave-to-convex crossover and logarithmic decay behavior, as found in other binary mixtures with large size disparity. Moreover, diffusion of both species is suppressed by adding small disks. Long-time diffusion for the small disks shows power-law-like behavior at sufficiently high area fractions of the small disks, which implies precursors of a glass transition for the large disks and a localization transition for the small disks. Therefore, our results demonstrate the generic dynamic features in highly size-asymmetric binary mixtures.Comment: 9 pages, 12 figure

    Existence and multiplicity of positive bound states for Schrödinger equations

    Full text link

    Anticipating Daily Intention using On-Wrist Motion Triggered Sensing

    Full text link
    Anticipating human intention by observing one's actions has many applications. For instance, picking up a cellphone, then a charger (actions) implies that one wants to charge the cellphone (intention). By anticipating the intention, an intelligent system can guide the user to the closest power outlet. We propose an on-wrist motion triggered sensing system for anticipating daily intentions, where the on-wrist sensors help us to persistently observe one's actions. The core of the system is a novel Recurrent Neural Network (RNN) and Policy Network (PN), where the RNN encodes visual and motion observation to anticipate intention, and the PN parsimoniously triggers the process of visual observation to reduce computation requirement. We jointly trained the whole network using policy gradient and cross-entropy loss. To evaluate, we collect the first daily "intention" dataset consisting of 2379 videos with 34 intentions and 164 unique action sequences. Our method achieves 92.68%, 90.85%, 97.56% accuracy on three users while processing only 29% of the visual observation on average

    Diffusive redistribution of small spheres in crystallization of highly asymmetric binary hard-sphere mixtures

    Full text link
    We report a molecular dynamics study of crystallization in highly asymmetric binary hard-sphere mixtures, in which the large spheres can form a crystal phase while the small ones remain disordered during the crystallization process of the large spheres. By taking advantage of assisting crystal nucleation with a patterned substrate, direct evidence is presented that there is a close link between the diffusive redistribution of the small spheres and the crystal formation of the large spheres. Although the addition of a second component with large size disparity will not alter the crystal structure formed by the large spheres, the density profile of the small spheres displays corresponding changes at different crystallization stages and closely relates to the crystal growth, suggesting possible effect of small spheres on the crystallization kinetics.Comment: 5 pages, 5 figure

    Redetermination of 2,4′-methyl­ene­diphenol

    Get PDF
    In the previous determination [Finn & Musti (1950 ▶). J. Soc. Chem. Ind. (London), 69, S849] of the title compound, C13H12O2, the three-dimensional coordinates and displacement parameters were not reported. This redetermination at room temperature reveals that the dihedral angle between the benzene rings is 79.73 (6)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds between adjacent mol­ecules result in two-dimensional wave-like supra­molecular motifs parallel to the ab plane
    corecore