40 research outputs found

    Clinical and pathological correlates of severity classifications in trigger fingers based on computer-aided image analysis

    Get PDF
    BACKGROUND: The treatment of trigger finger so far has heavily relied on clinicians’ evaluations for the severity of patients’ symptoms and the functionality of affected fingers. However, there is still a lack of pathological evidence supporting the criteria of clinical evaluations. This study’s aim was to correlate clinical classification and pathological changes for trigger finger based on the tissue abnormality observed from microscopic images. METHODS: Tissue samples were acquired, and microscopic images were randomly selected and then graded by three pathologists and two physicians, respectively. Moreover, the acquired images were automatically analyzed to derive two quantitative parameters, the size ratio of the abnormal tissue region and the number ratio of the abnormal nuclei, which can reflect tissue abnormality caused by trigger finger. A self-developed image analysis system was used to avoid human subjectivity during the quantification process. Finally, correlations between the quantitative image parameters, pathological grading, and clinical severity classification were assessed. RESULTS: One-way ANOVA tests revealed significant correlations between the image quantification and pathological grading as well as between the image quantification and clinical severity classification. The Cohen’s kappa coefficient test also depicted good consistency between pathological grading and clinical severity classification. CONCLUSIONS: The criteria of clinical classification were found to be highly associated with the pathological changes of affected tissues. The correlations serve as explicit evidence supporting clinicians in making a treatment strategy of trigger finger. In addition, our proposed computer-aided image analysis system was considered to be a promising and objective approach to determining trigger finger severity at the microscopic level

    Biomechanical investigation of flexor digitorum tendons in trigger finger patients using sonography

    Get PDF
    Trigger finger (TF) has generally been ascribed to primary changes in the first annular (A1) pulley. Repeated friction between the A1 pulley and flexor digitorum tendons could result in swelling of soft tissues, and thus it has been speculated that TF affects tendons’ biomechanical behaviors. However, the pathology mechanism related to these behaviors remains unclear. The purposes of this study are to understand (1) the variations in the morphologies of the flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) between normal fingers and TFs, (2) the differences in the biomechanical behaviors of the FDP and FDS between normal fingers and TFs in various finger flexion positions, and (3) the effect of various finger positions on the biomechanical behaviors of the FDP and FDS

    Short Paper Optimized Semi-Boundary (SB) Rendering Scheme *

    No full text
    Volume rendering is a technique for visualizing 3D arrays of sampled data. Volume rendering, though capable of performing very effective visualization, is very computationally intensive. Semi-boundary (SB) is a compact data structure used to encode extracted surface from volume data. In this paper, we describe an incremental algorithm to shorten rendering of SB nodes. We define two projection rules to guarantee proper projection order and, thus, eliminate the requirement for a Z-buffer. Using these two rules, we save data storage as well as rendering time. As a result, the proposed method can achieve interactive rendering performance for a large volume pelvis data set with a size of 512 ÂĄ 512 ÂĄ 245. Experimental results show that our achieved rendering rate is less dependent on viewing angles

    Development of Automatic Endotracheal Tube and Carina Detection on Portable Supine Chest Radiographs using Artificial Intelligence

    Full text link
    The image quality of portable supine chest radiographs is inherently poor due to low contrast and high noise. The endotracheal intubation detection requires the locations of the endotracheal tube (ETT) tip and carina. The goal is to find the distance between the ETT tip and the carina in chest radiography. To overcome such a problem, we propose a feature extraction method with Mask R-CNN. The Mask R-CNN predicts a tube and a tracheal bifurcation in an image. Then, the feature extraction method is used to find the feature point of the ETT tip and that of the carina. Therefore, the ETT-carina distance can be obtained. In our experiments, our results can exceed 96\% in terms of recall and precision. Moreover, the object error is less than 4.7751±5.34204.7751\pm 5.3420 mm, and the ETT-carina distance errors are less than 5.5432±6.31005.5432\pm 6.3100 mm. The external validation shows that the proposed method is a high-robustness system. According to the Pearson correlation coefficient, we have a strong correlation between the board-certified intensivists and our result in terms of ETT-carina distance

    Detecting Endotracheal Tube and Carina on Portable Supine Chest Radiographs Using One-Stage Detector with a Coarse-to-Fine Attention

    No full text
    In intensive care units (ICUs), after endotracheal intubation, the position of the endotracheal tube (ETT) should be checked to avoid complications. The malposition can be detected by the distance between the ETT tip and the Carina (ETT–Carina distance). However, it struggles with a limited performance for two major problems, i.e., occlusion by external machine, and the posture and machine of taking chest radiographs. While previous studies addressed these problems, they always suffered from the requirements of manual intervention. Therefore, the purpose of this paper is to locate the ETT tip and the Carina more accurately for detecting the malposition without manual intervention. The proposed architecture is composed of FCOS: Fully Convolutional One-Stage Object Detection, an attention mechanism named Coarse-to-Fine Attention (CTFA), and a segmentation branch. Moreover, a post-process algorithm is adopted to select the final location of the ETT tip and the Carina. Three metrics were used to evaluate the performance of the proposed method. With the dataset provided by National Cheng Kung University Hospital, the accuracy of the malposition detected by the proposed method achieves 88.82% and the ETT–Carina distance errors are less than 5.333±6.240 mm

    Cobb Angle Measurement of Spine from X-Ray Images Using Convolutional Neural Network

    No full text
    Scoliosis is a common spinal condition where the spine curves to the side and thus deforms the spine. Curvature estimation provides a powerful index to evaluate the deformation severity of scoliosis. In current clinical diagnosis, the standard curvature estimation method for assessing the curvature quantitatively is done by measuring the Cobb angle, which is the angle between two lines, drawn perpendicular to the upper endplate of the uppermost vertebra involved and the lower endplate of the lowest vertebra involved. However, manual measurement of spine curvature requires considerable time and effort, along with associated problems such as interobserver and intraobserver variations. In this article, we propose an automatic system for measuring spine curvature using the anterior-posterior (AP) view spinal X-ray images. Due to the characteristic of AP view images, we first reduced the image size and then used horizontal and vertical intensity projection histograms to define the region of interest of the spine which is then cropped for sequential processing. Next, the boundaries of the spine, the central spinal curve line, and the spine foreground are detected by using intensity and gradient information of the region of interest, and a progressive thresholding approach is then employed to detect the locations of the vertebrae. In order to reduce the influences of inconsistent intensity distribution of vertebrae in the spine AP image, we applied the deep learning convolutional neural network (CNN) approaches which include the U-Net, the Dense U-Net, and Residual U-Net, to segment the vertebrae. Finally, the segmentation results of the vertebrae are reconstructed into a complete segmented spine image, and the spine curvature is calculated based on the Cobb angle criterion. In the experiments, we showed the results for spine segmentation and spine curvature; the results were then compared to manual measurements by specialists. The segmentation results of the Residual U-Net were superior to the other two convolutional neural networks. The one-way ANOVA test also demonstrated that the three measurements including the manual records of two different physicians and our proposed measured record were not significantly different in terms of spine curvature measurement. Looking forward, the proposed system can be applied in clinical diagnosis to assist doctors for a better understanding of scoliosis severity and for clinical treatments
    corecore