18 research outputs found

    Reversible Transition Between Thermodynamically Stable Phases with Low Density of Oxygen Vacancies on SrTiO3_3(110) Surface

    Full text link
    The surface reconstruction of SrTiO3_3(110) is studied with scanning tunneling microscopy and density functional theory (DFT) calculations. The reversible phase transition between (4×\times1) and (5×\times1) is controlled by adjusting the surface metal concentration [Sr] or [Ti]. Resolving the atomic structures of the surface, DFT calculations verify that the phase stability changes upon the chemical potential of Sr or Ti. Particularly, the density of oxygen vacancies is low on the thermodynamically stabilized SrTiO3_3(110) surface.Comment: Accepted by Physical Review Letter

    Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium

    Get PDF
    Exciton-polaritons in semiconductor microcavities have been used to demonstrate quantum effects such as Bose-Einstein condensation, superfluity, and quantized vortices. However, in these experiments, the polaritons have not reached thermal equilibrium when they undergo the transition to a coherent state. This has prevented the verification of one of the canonical predictions for condensation, namely the phase diagram. In this work, we have created a polariton gas in a semiconductor microcavity in which the quasiparticles have a lifetime much longer than their thermalization time. This allows them to reach thermal equilibrium in a laser-generated confining trap. Their energy distributions are well fit by equilibrium Bose-Einstein distributions over a broad range of densities and temperatures from very low densities all the way up to the threshold for Bose-Einstein condensation. The good fits of the Bose-Einstein distribution over a broad range of density and temperature imply that the particles obey the predicted power law for the phase boundary of Bose-Einstein condensation

    Exciton-polaritons in thermal equilibrium : from Bose-Einstein condensation to exciton-polaritonics

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 249-265).Coherent control has been at the heart of the study of physical chemistry. Great advancement has been achieved in the past few decades in coherent control of classical systems by using spatially and temporally shaped electromagnetic waves. In this dissertation, we extend the concept of coherent control to a purely quantum mechanical collective system, namely, microcavity exciton-polariton Bose-Einstein condensates. Microcavity exciton-polaritons, hereafter simply polaritons, are bosonic quasiparticles formed in a resonant semiconductor microcavity by coupling the excitonic polarizabilities in quantum wells to the transverse mode of the confined optical field in the cavity. The light-matter dual nature allows direct control of polaritons through either their excitonic or photonic components. By utilizing the fact that polariton-exciton and polariton-polariton interactions are repulsive, all-optical control of polaritons was realized. By shaping the intensity fronts of the optical beam incident on a microcavity, the potential landscape felt by polaritons can be easily tailored. This is the key ingredient of this dissertation work. The light-matter dual nature endows polaritons a very small effective mass that is one hundred million times less than that of a hydrogen atom, leading to the observation of quantum phenomena such as condensation, superfluidity and quantized vortices at temperatures ranging from tens of Kelvin up to room temperatures. However, debates persist over whether the observed phenomena can be related to Bose- Einstein condensation because polaritons are not in thermal equilibrium. By applying all-optical trapping to a high-quality microcavity structure, polaritons at both spatial and thermal equilibrium were achieved across a broad range of densities and bath temperatures, as evidenced by the observed equilibrium Bose-Einstein distributions. A phase diagram for Bose-Einstein condensation of polaritons was produced for the first time, which agrees with the predictions of basic quantum gas theory. The thermalization behavior depends crucially on the interactions among polaritons. By changing the underlying excitonic/photonic fractions in polaritons, the interaction strength of polaritons can be varied, leading to control between nonequilibrium and equilibrium behavior of the polariton gas. The interactions also play a crucial role in polaritonic device operations. However, an accurate measurement of the polariton-polariton interaction strength has been not possible because of the difficulty in separating polaritons and excitons that are created by the same optical excitation. After propagating to the center of a sufficiently large optically induced annular trap, polaritons were separated from the incoherent populations of free carriers and hot excitons. The polariton interaction strength was then extracted from energies measured as a function of the polariton density. The measured interaction strength was about two orders of magnitude larger than previous theoretical estimates, putting polaritons squarely into the strongly interacting regime. Optical control can also be utilized to directly manipulate polariton condensates. By tailoring the size and pumping intensity of the optical trap, polariton condensates can be switched among different high-order modes and the homogeneous condensate mode. The redistribution of spatial densities is accompanied by a superlinear increase in the emission intensity as a function of excitation power, implying that polariton condensates in this geometry could be exploited as a multistate switch. The parameters for reproducible switching between the high-order states in the optical trap have been measured experimentally, giving us a phase diagram for the mode switching. It will serve well to calibrate the implementation of an exciton-polaritonic multistate switch.by Yongbao Sun.Ph. D

    Infinitely many solutions for Kirchhoff-type problems depending on a parameter

    No full text
    In this article, we study a Kirchhoff type problem with a positive parameter λ\lambda, \displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , } where K:[0,+∞)→RK:[0,+\infty )\to \mathbb{R} is a continuous function and f:Ω×R→Rf:\Omega \times \mathbb{R}\to \mathbb{R} is a L1L^{1}-Caratheodory function. Under suitable assumptions on K(t) and f(x,u), we obtain the existence of infinitely many solutions depending on the real parameter λ\lambda. Unlike most other papers, we do not require any symmetric condition on the nonlinear term f(x,u)f(x,u). Our proof is based on variational methods

    Study of the Technologies for Freeze Protection of Cooling Towers in the Solar System

    No full text
    A cooling tower is an important guarantee for the proper operation of a solar system. To ensure proper operation of the system and to maintain high-efficiency points, the cooling tower must operate year-round. However, freezing is a common problem that degrades the performance of cooling towers in winter. For example, the air inlet forms hanging ice, which clogs the air path, and the coil in closed cooling towers freezes and cracks, leading to water leakage in the internal circulation. This has become an intractable problem that affects the safety and performance of cooling systems in winter. To address this problem, three methods of freeze protection for cooling towers are studied: (a) the dry and wet mixing operation method—the method of selecting heat exchangers under dry operation at different environments and inlet water temperatures is presented. The numerical experiment shows that the dry and wet mixing operation method can effectively avoid ice hanging on the air inlet. (b) The engineering plastic capillary mats method—its freeze protection characteristics, thermal performance, and economics are studied, and the experiment result is that polyethylene (PE) can meet the demands of freeze protection. (c) The antifreeze fluid method—the cooling capacity of the closed cooling towers with different concentrations of glycol antifreeze fluid is numerically studied by analyzing the heat transfer coefficient ratio, the air volume ratio, the heat dissipation ratio, and the flow rate ratio. The addition of glycol will reduce the cooling capacity of the closed cooling tower

    Study of the Technologies for Freeze Protection of Cooling Towers in the Solar System

    No full text
    A cooling tower is an important guarantee for the proper operation of a solar system. To ensure proper operation of the system and to maintain high-efficiency points, the cooling tower must operate year-round. However, freezing is a common problem that degrades the performance of cooling towers in winter. For example, the air inlet forms hanging ice, which clogs the air path, and the coil in closed cooling towers freezes and cracks, leading to water leakage in the internal circulation. This has become an intractable problem that affects the safety and performance of cooling systems in winter. To address this problem, three methods of freeze protection for cooling towers are studied: (a) the dry and wet mixing operation method—the method of selecting heat exchangers under dry operation at different environments and inlet water temperatures is presented. The numerical experiment shows that the dry and wet mixing operation method can effectively avoid ice hanging on the air inlet. (b) The engineering plastic capillary mats method—its freeze protection characteristics, thermal performance, and economics are studied, and the experiment result is that polyethylene (PE) can meet the demands of freeze protection. (c) The antifreeze fluid method—the cooling capacity of the closed cooling towers with different concentrations of glycol antifreeze fluid is numerically studied by analyzing the heat transfer coefficient ratio, the air volume ratio, the heat dissipation ratio, and the flow rate ratio. The addition of glycol will reduce the cooling capacity of the closed cooling tower

    Accumulation and Enrichment of Trace Elements by Yeast Cells and Their Applications: A Critical Review

    No full text
    Maintaining the homeostasis balance of trace elements is crucial for the health of organisms. Human health is threatened by diseases caused by a lack of trace elements. Saccharomyces cerevisiae has a wide and close relationship with human daily life and industrial applications. It can not only be used as fermentation products and single-cell proteins, but also as a trace elements supplement that is widely used in food, feed, and medicine. Trace-element-enriched yeast, viz., chromium-, iron-, zinc-, and selenium-enriched yeast, as an impactful microelements supplement, is more efficient, more environmentally friendly, and safer than its inorganic and organic counterparts. Over the last few decades, genetic engineering has been developing large-scaled genetic re-design and reconstruction in yeast. It is hoped that engineered yeast will include a higher concentration of trace elements. In this review, we compare the common supplement forms of several key trace elements. The mechanisms of detoxification and transport of trace elements in yeast are also reviewed thoroughly. Moreover, genes involved in the transport and detoxification of trace elements are summarized. A feasible way of metabolic engineering transformation of S. cerevisiae to produce trace-element-enriched yeast is examined. In addition, the economy, safety, and environmental protection of the engineered yeast are explored, and the future research direction of yeast enriched in trace elements is discussed

    The Production of Pyruvate in Biological Technology: A Critical Review

    No full text
    Pyruvic acid has numerous applications in the food, chemical, and pharmaceutical industries. The high costs of chemical synthesis have prevented the extensive use of pyruvate for many applications. Metabolic engineering and traditional strategies for mutation and selection have been applied to microorganisms to enhance their ability to produce pyruvate. In the past decades, different microbial strains were generated to enhance their pyruvate production capability. In addition to the development of genetic engineering and metabolic engineering in recent years, the metabolic transformation of wild-type yeast, E. coli, and so on to produce high-yielding pyruvate strains has become a hot spot. The strategy and the understanding of the central metabolism directly related to pyruvate production could provide valuable information for improvements in fermentation products. One of the goals of this review was to collect information regarding metabolically engineered strains and the microbial fermentation processes used to produce pyruvate in high yield and productivity
    corecore