110 research outputs found

    Extraconnectivity of k-ary n-cube networks

    Get PDF
    AbstractGiven a graph G and a non-negative integer g, the g-extraconnectivity of G is the minimum cardinality of a set of vertices in G, if such a set exists, whose deletion disconnects G and leaves every remaining component with more than g vertices. This study shows that the 2-extraconnectivity of a k-ary n-cube Qnk for k≥4 and n≥5 is equal to 6n−5

    Enteric bacterial loads are associated with interleukin-6 levels in systemic inflammatory response syndrome patients

    Get PDF
    AbstractBackgroundLoss of intestinal integrity is a critical contributor to excessive inflammation following severe trauma or major surgery. In the case of enterocyte damage, intestinal fatty acid-binding protein (IFABP) is released into the extracellular space. Excessive production of interleukin (IL)-6 can induce systemic inflammatory response syndrome (SIRS). However, the correlation of IL-6 with gut barrier failure and bacterial translocation in critically ill patients has not been well characterized.PurposesTo define the relationship between enteric bacterial loads and IL-6 levels in patients with SIRS.MethodsVariables related to prognosis and treatment were measured in 85 patients with SIRS upon admission to the emergency room. IL-6 and IFABP were measured using an enzyme-linked immunosorbent assay. Enteric bacterial loads in blood were measured through quantitative real-time polymerase chain reaction with primers specific for enteric bacteria.ResultsMultivariate analysis revealed a positive correlation between enteric bacterial loads and IL-6 levels in blood. Elevated IFABP concentration was associated with low blood pressure, high respiration rate, hyperglycemia, and high Sequential Organ Failure Assessment score. Elevated C-reactive protein concentrations were associated with higher soluble CD14 levels in blood.ConclusionEnterocyte damage is associated with hypotension and tachypnia in patients with SIRS. Gut function failure may permit enteric bacteria to enter the blood, thereby elevating IL-6 levels and inducing a systemic inflammatory response, resulting in multiple organ failure

    Identification of a New Peptide for Fibrosarcoma Tumor Targeting and Imaging In Vivo

    Get PDF
    A 12-mer amino acid peptide SATTHYRLQAAN, denominated TK4, was isolated from a phage-display library with fibrosarcoma tumor-binding activity. In vivo biodistribution analysis of TK4-displaying phage showed a significant increased phage titer in implanted tumor up to 10-fold in comparison with normal tissues after systemic administration in mouse. Competition assay confirmed that the binding of TK4-phage to tumor cells depends on the TK4 peptide. Intravenous injection of 131I-labeled synthetic TK4 peptide in mice showed a tumor retention of 3.3% and 2.7% ID/g at 1- and 4-hour postinjection, respectively. Tumor-to-muscle ratio was 1.1, 5.7, and 3.2 at 1-, 4-, and 24-hour, respectively, and tumors were imaged on a digital γ-camera at 4-hour postinjection. The present data suggest that TK4 holds promise as a lead structure for tumor targeting, and it could be further applied in the development of diagnostic or therapeutic agent

    Rest-Mediated Regulation of Extracellular Matrix Is Crucial for Neural Development

    Get PDF
    Neural development from blastocysts is strictly controlled by intricate transcriptional programmes that initiate the down-regulation of pluripotent genes, Oct4, Nanog and Rex1 in blastocysts followed by up-regulation of lineage-specific genes as neural development proceeds. Here, we demonstrate that the expression pattern of the transcription factor Rest mirrors those of pluripotent genes during neural development from embryonic stem (ES) cells and an early abrogation of Rest in ES cells using a combination of gene targeting and RNAi approaches causes defects in this process. Specifically, Rest ablation does not alter ES cell pluripotency, but impedes the production of Nestin+ neural stem cells, neural progenitor cells and neurons, and results in defective adhesion, decrease in cell proliferation, increase in cell death and neuronal phenotypic defects typified by a reduction in migration and neurite elaboration. We also show that these Rest-null phenotypes are due to the dysregulation of its direct or indirect target genes, Lama1, Lamb1, Lamc1 and Lama2 and that these aberrant phenotypes can be rescued by laminins

    The Use of Nanoscale Visible Light-Responsive Photocatalyst TiO2-Pt for the Elimination of Soil-Borne Pathogens

    Get PDF
    Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens

    Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration

    Get PDF

    The Cellulose Synthase Gene Superfamily and Biochemical Functions of Xylem-Specific Cellulose Synthase-Like Genes in Populus trichocarpa

    No full text
    Wood from forest trees modified for more cellulose or hemicelluloses could be a major feedstock for fuel ethanol. Xylan and glucomannan are the two major hemicelluloses in wood of angiosperms. However, little is known about the genes and gene products involved in the synthesis of these wood polysaccharides. Using Populus trichocarpa as a model angiosperm tree, we report here a systematic analysis in various tissues of the absolute transcript copy numbers of cellulose synthase superfamily genes, the cellulose synthase (CesA) and the hemicellulose-related cellulose synthase-like (Csl) genes. Candidate Csl genes were characterized for biochemical functions in Drosophila Schneider 2 (S2) cells. Of the 48 identified members, 37 were found expressed in various tissues. Seven CesA genes are xylem specific, suggesting gene networks for the synthesis of wood cellulose. Four Csl genes are xylem specific, three of which belong to the CslA subfamily. The more xylem-specific CslA subfamily is represented by three types of members: PtCslA1, PtCslA3, and PtCslA5. They share high sequence homology, but their recombinant proteins produced by the S2 cells exhibited distinct substrate specificity. PtCslA5 had no catalytic activity with the substrates for xylan or glucomannan. PtCslA1 and PtCslA3 encoded mannan synthases, but PtCslA1 further encoded a glucomannan synthase for the synthesis of (1→4)-β-d-glucomannan. The expression of PtCslA1 is most highly xylem specific, suggesting a key role for it in the synthesis of wood glucomannan. The results may help guide further studies to learn about the regulation of cellulose and hemicellulose synthesis in wood

    Duloxetine-Induced Hyponatremia in an Elderly Male Patient with Treatment-Refractory Major Depressive Disorder

    No full text
    Several classes of antidepressants can induce syndrome of inappropriate antidiuretic hormone hypersecretion (SIADH), thereby causing hyponatremia. Initial symptoms of hyponatremia include neuropsychiatric and gastrointestinal manifestations can mimic depression, especially in elderly people with multiple somatic complaints. Here we present a case of a 68-year-old man with treatment-refractory depression and general anxiety disorder who developed duloxetine-induced hyponatremia. His symptoms of hyponatremia including unsteady gait, dizziness, nausea, general malaise, and poor appetite subsided after discontinuing the offending medication. Our case illustrates that drug-induced SIADH and potential drug-drug interactions should be considered in elderly patients who develop hyponatremia following the initiation of antidepressants
    corecore