95,792 research outputs found

    Adiabatic passage of collective excitations in atomic ensembles

    Full text link
    We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.Comment: 7 pages, 2 figure

    Quantum sensing of rotation velocity based on transverse field Ising model

    Full text link
    We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system's rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength \delta between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.Comment: 6 pages,6 figure

    Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large junction

    Full text link
    We propose a theoretical protocol for quantum logic gates between two Josephson junction charge-phase qubits through the control of their coupling to a large junction. In the low excitation limit of the large junction when EJ≫EcE_{J}\gg E_{c}, it behaves effectively as a quantum data-bus mode of a harmonic oscillator. Our protocol is efficient and fast. In addition, it does not require the data-bus to stay adiabatically in its ground state, as such it can be implemented over a wide parameter regime independent of the data-bus quantum state.Comment: 5 pages, 1 figur
    • …
    corecore