76 research outputs found

    Label Budget Allocation in Multi-Task Learning

    Full text link
    The cost of labeling data often limits the performance of machine learning systems. In multi-task learning, related tasks provide information to each other and improve overall performance, but the label cost can vary among tasks. How should the label budget (i.e. the amount of money spent on labeling) be allocated among different tasks to achieve optimal multi-task performance? We are the first to propose and formally define the label budget allocation problem in multi-task learning and to empirically show that different budget allocation strategies make a big difference to its performance. We propose a Task-Adaptive Budget Allocation algorithm to robustly generate the optimal budget allocation adaptive to different multi-task learning settings. Specifically, we estimate and then maximize the extent of new information obtained from the allocated budget as a proxy for multi-task learning performance. Experiments on PASCAL VOC and Taskonomy demonstrate the efficacy of our approach over other widely used heuristic labeling strategies

    DIME-FM: DIstilling Multimodal and Efficient Foundation Models

    Full text link
    Large Vision-Language Foundation Models (VLFM), such as CLIP, ALIGN and Florence, are trained on large-scale datasets of image-caption pairs and achieve superior transferability and robustness on downstream tasks, but they are difficult to use in many practical applications due to their large size, high latency and fixed architectures. Unfortunately, recent work shows training a small custom VLFM for resource-limited applications is currently very difficult using public and smaller-scale data. In this paper, we introduce a new distillation mechanism (DIME-FM) that allows us to transfer the knowledge contained in large VLFMs to smaller, customized foundation models using a relatively small amount of inexpensive, unpaired images and sentences. We transfer the knowledge from the pre-trained CLIP-ViTL/14 model to a ViT-B/32 model, with only 40M public images and 28.4M unpaired public sentences. The resulting model "Distill-ViT-B/32" rivals the CLIP-ViT-B/32 model pre-trained on its private WiT dataset (400M image-text pairs): Distill-ViT-B/32 achieves similar results in terms of zero-shot and linear-probing performance on both ImageNet and the ELEVATER (20 image classification tasks) benchmarks. It also displays comparable robustness when evaluated on five datasets with natural distribution shifts from ImageNet
    • …
    corecore