14,298 research outputs found

    Comparative Study Of Methyl-Tert-Butyl Ether Extractives From RYE And Rice Straw

    Get PDF
    The chemical composition of lipophilic extractives from rye and rice straws has been comparatively examined. Free fatty acids (19.04-22.95%), sterols (12.54-14.60%), waxes (9.53-27.14%), steryl esters (16.02-18.19%), and triglycerides (5.72-11.38%) were identified as the five major classes of lipids in the two straw extractives. Minor components of diglycerides (0.23-0.42%) and resin acids (0.05-0.12%) were also verified from the two straw lipophilic extracts. Of the individual compounds in each group, fifteen free fatty acids, four sterols, three waxes, five steryl esters, and three triglycerides were quantitatively determined. The most abundant saturated free fatty acids were palmitic acid (C16:0, 3.96-4.24%) and tetradecanoic acid (C14:0, 2.95-3.62%), whereas linoleic (C18:2) and/or oleic (C18: 1) acids (1.87-2.09%) were the most dominant unsaturated free fatty acids. β-Sitosterol was identified as a predominant component, accounting for 83.89% of the total sterols in rye straw extract and 94.45% in rice straw extractives. Palmitic acid palmityl ester was verified as a dominant component in a group of waxes, accounting for approximately 70% of the waxes analyzed in the two extracts. The steryl esters analyzed were composed mainly of steryl laurate (0.29-0.95%), steryl myristate (3.20-3.56%), steryl palmitate (1.86-2.28%), steryl margarate (2.20-2.93%), and steryl oleate (2.13%). Of the triglycerides verified, glyceryl tripalmitate (0.23-1.64%), 1,2-dipalmitoyl-3-oleoylrac-glycerol (1.06-2.08%), and triolein (cis-9) (0.77-1.61%) were identified in this group

    Clinicopathological significance of stromal variables: angiogenesis, lymphangiogenesis, inflammatory infiltration, MMP and PINCH in colorectal carcinomas

    Get PDF
    Cancer research has mainly focused on alterations of genes and proteins in cancer cells themselves that result in either gain-of-function in oncogenes or loss-of-function in tumour-suppressor genes. However, stromal variables within or around tumours, including blood and lymph vessels, stromal cells and various proteins, have also important impacts on tumour development and progression. It has been shown that disruption of stromal-epithelial interactions influences cellular proliferation, differentiation, death, motility, genomic integrity, angiogenesis, and other phenotypes in various tissues. Moreover, stromal variables are also critical to therapy in cancer patients. In this review, we mainly focus on the clinicopathological significance of stromal variables including angiogenesis, lymphangiogenesis, inflammatory infiltration, matrix metalloproteinase (MMP), and the particularly interesting new cysteine-histidine rich protein (PINCH) in colorectal cancer (CRC)
    • …
    corecore