141 research outputs found
Cellular automata as a tool for image processing
An overview is given on the use of cellular automata for image processing. We first consider the number of patterns that can exist in a neighbourhood, allowing for invariance to certain transformation. These patterns correspond to possible rules, and several schemes are described for automatically learning an appropriate rule set from training data. Two alternative schemes are given for coping with gray level (rather than binary) images without incurring a huge explosion in the number of possible rules. Finally, examples are provided of training various types of cellular automata with various rule identification schemes to perform several image processing tasks
Saliency guided local and global descriptors for effective action recognition
This paper presents a novel framework for human action recognition based on salient object detection and a new combination of local and global descriptors. We first detect salient objects in video frames and only extract features for such objects. We then use a simple strategy to identify and process only those video frames that contain salient objects. Processing salient objects instead of all frames not only makes the algorithm more efficient, but more importantly also suppresses the interference of background pixels. We combine this approach with a new combination of local and global descriptors, namely 3D-SIFT and histograms of oriented optical flow (HOOF), respectively. The resulting saliency guided 3D-SIFT–HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM) classifier for human action recognition. Experiments conducted on the standard KTH and UCF-Sports action benchmarks show that our new method outperforms the competing state-of-the-art spatiotemporal feature-based human action recognition metho
3D GLOH features for human action recognition
Human action recognition from videos has wide applicability and receives significant interests. In this work, to better identify spatio-temporal characteristics, we propose a novel 3D extension of Gradient Location and Orientation Histograms, which provides discriminative local features representing not only the gradient orientation, but also their relative locations. We further propose a human action recognition system based on the Bag of Visual Words model, by combining the new 3D GLOH local features with Histograms of Oriented Optical Flow (HOOF) global features. Along with the idea from our recent work to extract features only in salient regions, our overall system outperforms existing feature descriptors for human action recognition for challenging real-world video datasets
Copy-move forgery detection using the segment gradient orientation histogram
The ready availability of image-editing software makes ensuring the authenticity of images an important issue. The most common type of image tampering is cloning, or Copy-Move Forgery (CMF), in which part(s) of the image are copied and pasted back into the same image. One possible transformation is where an object is copied, rotated and pasted; this type of forgery is called Copy-Rotate-Move Forgery (CRMF). Applying post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of forgery detection. This paper presents a novel segmentation-based Copy-Move forgery detection method. A new method has been developed to segment the Copy-Move objects in a consistent way that is more efficient than Simple Linear Iterative Clustering (SLIC) segmentation for CMF/CRMF. We propose a new method to describe irregular shaped blocks (segments). The Segment Gradient Orientation Histogram (SGOH), is used to describe the gradient distribution of each segment. The quality of initial matches is improved by applying hysteresis to grow the primary detection regions. We show that the proposed method can effectively detect forgery involving translation and rotation. Moreover, the proposed method can detect forgery in images with blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise
Improving shape from shading with interactive Tabu search
Optimisation based shape from shading (SFS) is sensitive to initialization: errors in initialization are a significant cause of poor overall shape reconstruction. In this paper, we present a method to help overcome this problem by means of user interaction. There are two key elements in our method. Firstly, we extend SFS to consider a set of initializations, rather than to use a single one. Secondly, we efficiently explore this initialization space using a heuristic search method, tabu search, guided by user evaluation of the reconstruction quality. Reconstruction results on both synthetic and real images demonstrate the effectiveness of our method in providing more desirable shape reconstructions
Skeleton-based canonical forms for non-rigid 3D shape retrieval
The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to ``unbend'' a shape by applying multidimensional scaling to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to a computational speed-up and less distortions of the local details of the shape. We compare our method against other canonical forms and our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over state-of-the-art in a second recent benchmark, while being significantly faster
Non uniform shrinkages of double-walled carbon nanotube as induced by electron beam irradiation
Electron beam-induced nanoinstabilities of pristine double-walled carbon nanotubes (DWCNTs) of two different configurations, one fixed at both ends and another fixed at only one end, were in-situ investigated in transmission electron microscope at room temperature. It was observed that the DWCNT fixed at both ends shrank in its diameter uniformly. Meanwhile, the DWCNT fixed at only one end intriguingly shrank preferentially from its free cap end along its axial direction whereas its diameter shrinkage was offset. A mechanism of "diffusion" along with "evaporation" at room temperature which is driven by the nanocurvature of the DWCNTs, and the athermal activation induced by the electron beam was proposed to elucidate the observed phenomena. The effect of the interlayer interaction of the DWCNTs was also discussed
Cybernetic basis and system practice of remote sensing and spatial information science
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level
- …