14 research outputs found

    Chemical vapour deposition of hexagonal boron nitride for two dimensional electronics

    Get PDF
    Hexagonal boron nitride (h-BN) has potential applications in protective coatings, single photon emitters and as substrate for graphene electronics. In this paper, we report on the growth of h-BN by chemical vapor deposition (CVD) using ammonia borane as the precursor. Use of CVD allows controlled synthesis over large areas defined by process parameters, e.g. temperature, time, process chamber pressure and gas partial pressures. Furthermore, independently grown graphene and h-BN layers are put together to realize enhancement in electronic properties of graphene.info:eu-repo/semantics/publishedVersio

    Spectral-temporal luminescence properties of Colloidal CdSe/ZnS Quantum Dots in relevant polymer matrices for integration in low turn-on voltage AC-driven LEDs

    Get PDF
    This work employs spectral and spectral-temporal Photoluminescence (PL) spectroscopy techniques to study the radiative mechanisms in colloidal CdSe/ZnS Quantum Dot (QD) thin films without and with 1% PMMA polymer matrix embedding (QDPMMA). The observed bimodal transient-spectral PL distributions reveal bandgap transitions and radiative recombinations after interdot electron transfer. The PMMA polymer embedding protects the QDs during the plasma-sputtering of inorganic layers electroluminescent (EL) devices, with minimal impact on the charge transfer properties. Further, a novel TiO2-based, all-electron bandgap, AC-driven QLED architecture is fabricated, yielding a surprisingly low turn-on voltage, with PL-identical and narrow-band EL emission. The symmetric TiO2 bilayer architecture is a promising test platform for alternative optical active materials.European Commission, Seventh Framework Programme (600375); European Commission, Horizon 2020 Framework Programme (828841); European Regional Development Fund, INTERREG V-A España-Portugal (POCTEP) 2014-2020 (0181_NANOEATERS_1_EP); CCDR-N (NORTE-01-0145-FEDER-000019); Fundação para a Ciência e a Tecnologia (UIDB/04650/2020)

    The role of Akkermansia muciniphila in inflammatory bowel disease: Current knowledge and perspectives

    Get PDF
    Inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, is a chronic relapsing gastrointestinal inflammatory disease mediated by dysregulated immune responses to resident intestinal microbiota. Current conventional approaches including aminosalicylates, corticosteroids, immunosuppressive agents, and biological therapies are focused on reducing intestinal inflammation besides inducing and maintaining disease remission, and managing complications. However, these therapies are not curative and are associated with various limitations, such as drug resistance, low responsiveness and adverse events. Recent accumulated evidence has revealed the involvement of mucin-degrading bacterium Akkermansia muciniphila (A. muciniphila) in the regulation of host barrier function and immune response, and how reduced intestinal colonisation of probiotic A. muciniphila can contribute to the process and development of inflammatory bowel diseases, suggesting that it may be a potential target and promising strategy for the therapy of inflammatory bowel disease. In this review, we summarise the current knowledge of the role of A. muciniphila in IBD, especially focusing on the related mechanisms, as well as the strategies based on supplementation with A. muciniphila, probiotics and prebiotics, natural diets, drugs, and herbs to promote its colonisation in the gut, and holds promise for A. muciniphila-targeted and -based therapies in the treatment of inflammatory bowel disease

    The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO<sub>2</sub>/FTO Memory Device

    No full text
    In this paper, the effect of nitrogen annealing on the resistive switching characteristics of the rutile TiO2 nanowire-based W/TiO2/FTO memory device is analyzed. The W/TiO2/FTO memory device exhibits a nonvolatile bipolar resistive switching behavior with a high resistance ratio (RHRS/RLRS) of about two orders of magnitude. The conduction behaviors of the W/TiO2/FTO memory device are attributed to the Ohmic conduction mechanism and the Schottky emission in the low resistance state and the high resistance state, respectively. Furthermore, the RHRS/RLRS of the W/TiO2/FTO memory device is obviously increased from about two orders of magnitude to three orders of magnitude after the rapid nitrogen annealing treatment. In addition, the change in the W/TiO2 Schottky barrier depletion layer thickness and barrier height modified by the oxygen vacancies at the W/TiO2 interface is suggested to be responsible for the resistive switching characteristics of the W/TiO2/FTO memory device. This work demonstrates the potential applications of the rutile TiO2 nanowire-based W/TiO2/FTO memory device for high-density data storage in nonvolatile memory devices

    Tunable Plasmonic Perfect Absorber for Hot Electron Photodetection in Gold-Coated Silicon Nanopillars

    No full text
    Infrared detection technology has important applications in laser ranging, imaging, night vision, and other fields. Furthermore, recent studies have proven that hot carriers which are generated by surface plasmon decay can be exploited for photodetection to get beyond semiconductors’ bandgap restriction. In this study, silicon nanopillars (NPs) and gold film at the top and bottom of silicon nanopillars were designed to generate surface plasmon resonance and Fabry–Perot resonance to achieve perfect absorption. The absorption was calculated using the Finite Difference Time Domain (FDTD) method, and factors’ effects on resonance wavelength and absorption were examined. Here we demonstrate how this perfect absorber can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. Further study revealed that the resonance wavelength can be redshifted to the mid-infrared band (e.g., 3.75 μm) by increasing the value of the structure parameters. These results demonstrate a success in the study of polarization insensitivity, detection band adjustable, and efficient perfect absorption infrared photodetectors

    Dynamically Tunable and Multifunctional Polarization Beam Splitters Based on Graphene Metasurfaces

    No full text
    Based on coupled-mode theory (CMT) and the finite-difference time-domain (FDTD) approach, we propose a graphene metasurface-based and multifunctional polarization beam splitter that is dynamically tunable. The structure, comprising two graphene strips at the top and bottom and four triangular graphene blocks in the center layer, can achieve triple plasma-induced transparency (PIT). In a single polarization state, the computational results reveal that synchronous or asynchronous six-mode electro-optical switching modulation may be performed by modifying the Fermi levels of graphene, with a maximum modulation degree of amplitude (MDA) of 97.6% at 5.148 THz. In addition, by varying the polarization angle, a polarization-sensitive, tunable polarization beam splitter (PBS) with an extinction ratio and insertion loss of 19.6 dB and 0.35 dB at 6.143 THz, respectively, and a frequency modulation degree of 25.2% was realized. Combining PIT with polarization sensitivity provides a viable platform and concept for developing graphene metasurface-based multifunctional and tunable polarization devices

    Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance

    No full text
    This paper presents a new theoretical proposal for a surface plasmon resonance (SPR) terahertz metamaterial absorber with five narrow absorption peaks. The overall structure comprises a sandwich stack consisting of a gold bottom layer, a silica medium, and a single-layer patterned graphene array on top. COMSOL simulation represents that the five absorption peaks under TE polarization are at fI = 1.99 THz (95.82%), fⅡ = 6.00 THz (98.47%), fⅢ = 7.37 THz (98.72%), fⅣ = 8.47 THz (99.87%), and fV = 9.38 THz (97.20%), respectively, which is almost consistent with the absorption performance under TM polarization. In contrast to noble metal absorbers, its absorption rates and resonance frequencies can be dynamically regulated by controlling the Fermi level and relaxation time of graphene. In addition, the device can maintain high absorptivity at 0~50° in TE polarization and 0~40° in TM polarization. The maximum refractive index sensitivity can reach SV = 1.75 THz/RIU, and the maximum figure of merit (FOM) can reach FOMV = 12.774 RIU−1. In conclusion, our design has the properties of dynamic tunability, polarization independence, wide-incident-angle absorption, and fine refractive index sensitivity. We believe that the device has potential applications in photodetectors, active optoelectronic devices, sensors, and other related fields

    Stable Resistive Switching in ZnO/PVA:MoS2 Bilayer Memristor

    No full text
    Reliability of nonvolatile resistive switching devices is the key point for practical applications of next-generation nonvolatile memories. Nowadays, nanostructured organic/inorganic heterojunction composites have gained wide attention due to their application potential in terms of large scalability and low-cost fabrication technique. In this study, the interaction between polyvinyl alcohol (PVA) and two-dimensional material molybdenum disulfide (MoS2) with different mixing ratios was investigated. The result confirms that the optimal ratio of PVA:MoS2 is 4:1, which presents an excellent resistive switching behavior. Moreover, we propose a resistive switching model of Ag/ZnO/PVA:MoS2/ITO bilayer structure, which inserts the ZnO as the protective layer between the electrode and the composite film. Compared with the device without ZnO layer structure, the resistive switching performance of Ag/ZnO/PVA:MoS2/ITO was improved greatly. Furthermore, a large resistive memory window up to 104 was observed in the Ag/ZnO/PVA:MoS2/ITO device, which enhanced at least three orders of magnitude more than the Ag/PVA:MoS2/ITO device. The proposed nanostructured Ag/ZnO/PVA:MoS2/ITO device has shown great application potential for the nonvolatile multilevel data storage memory

    Network Pharmacology Identifies the Mechanisms of Action of Tongxie Anchang Decoction in the Treatment of Irritable Bowel Syndrome with Diarrhea Predominant

    No full text
    Aim. This study aims to uncover the pharmacological mechanism of Tongxie Anchang Decoction (TXACD), a new and effective traditional Chinese medicine (TCM) prescription, for treating irritable bowel syndrome with diarrhea predominant (IBS-D) using network pharmacology. Methods. The active compounds and putative targets of TXACD were retrieved from TCMSP database and published literature; related target genes of IBS-D were retrieved from GeneCards; PPI network of the common target hub gene was constructed by STRING. Furthermore, these hub genes were analyzed using gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results. A total of 54 active compounds and 639 targets were identified through a database search. The compound-target network was constructed, and the key compounds were screened out according to the degree. By using the PPI and GO and KEGG enrichment analyses, the pharmacological mechanism network of TXACD in the treatment of IBS-D was constructed. Conclusions. This study revealed the possible mechanisms by which TXACD treatment alleviated IBS-D involvement in the modulation of multiple targets and multiple pathways, including the immune regulation, inflammatory response, and oxidative stress. These findings provide novel insights into the regulatory role of TXACD in the prevention and treatment of IBS-D and hold promise for herb-based complementary and alternative therapy

    Gut Microbiota-Mediated NLRP12 Expression Drives the Attenuation of Dextran Sulphate Sodium-Induced Ulcerative Colitis by Qingchang Wenzhong Decoction

    No full text
    Qingchang Wenzhong Decoction (QCWZD) is a newly developed, effective traditional Chinese herbal formulation for ulcerative colitis (UC). In earlier studies, we found that QCWZD could relieve the clinical symptoms of UC patients, reduce inflammation, and improve the intestinal barrier function in dextran sulphate sodium (DSS)-induced UC rats. However, the relationship between QCWZD and the gut microbiota in colitis was not clarified. In this study, we established a rat model of DSS-induced UC and then investigated the regulatory effects of QCWZD on the gut microbiota using 16S rRNA analysis. We also determined the expression of NLRP12 after QCWZD administration. Our findings suggested that QCWZD administration could modulate gut microbiota composition and selectively promote the protective strains such as Butyricimonas, Blautia, and Odoribacter, whereas the enteric pathogens including Clostridium and Dorea were significantly reduced after QCWZD treatment. It is noteworthy that QCWZD administration was identified to promote gut microbiota-mediated NLRP12 expression by inhibiting the activity of the TLR4/Blimp-1 axis. In conclusion, our study supports the potential of QCWZD administration as a beneficial therapeutic strategy for UC
    corecore