297 research outputs found
Pop-out and pop-in: Visual working memory advantages for unique items
Attentional control is thought to play a critical role in determining the amount of information that can be stored and retrieved from visual working memory (VWM). We tested whether and how task-irrelevant feature-based salience, known to affect the control of visual attention, affects VWM performance. Our results show that features of a task-irrelevant color singleton are more likely to be recalled from VWM than non-singleton items and that this increased memorability comes at a cost to the other items in the display. Furthermore, the singleton effect in VWM was negatively correlated with an individual’s baseline VWM capacity. Taken together, these results suggest that individual differences in VWM storage capacity may be partially attributable to the ability to ignore differences in task-irrelevant physical salience
Seeing the Forest and the Trees: Default Local Processing in Individuals with High Autistic Traits Does Not Come at the Expense of Global Attention.
Atypical sensory perception is one of the most ubiquitous symptoms of autism, including a tendency towards a local-processing bias. We investigated whether local-processing biases were associated with global-processing impairments on a global/local attentional-scope paradigm in conjunction with a composite-face task. Behavioural results were related to individuals\u27 levels of autistic traits, specifically the Attention to Detail subscale of the Autism Quotient, and the Sensory Profile Questionnaire. Individuals showing high rates of Attention to Detail were more susceptible to global attentional-scope manipulations, suggesting that local-processing biases associated with Attention to Detail do not come at the cost of a global-processing deficit, but reflect a difference in default global versus local bias. This relationship operated at the attentional/perceptual level, but not response criterion
Detection of extended TeV emission around the Geminga pulsar with H.E.S.S.
Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs
Astronomy outreach in Namibia : H.E.S.S. and beyond
Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the "Source of the Month", a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through 'open days' and guided tours on the site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building — this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia
Detection of new Extreme BL Lac objects with H.E.S.S. and Swift XRT
Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above 10 Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift-XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes
Evidence of 100 TeV γ-ray emission from HESS J1702-420 : a new PeVatron candidate
The identification of active PeVatrons, hadronic particle accelerators reaching the knee of the cosmic-ray spectrum (at the energy of few PeV), is crucial to understand the origin of cosmic rays in the Galaxy. In this context, we report on new H.E.S.S. observations of the PeVatron candidate HESS J1702-420, which bring evidence for the presence of γ-rays up to 100 TeV. This is the first time in the history of H.E.S.S. that photons with such high energy are observed. Remarkably, the new deep observations allowed the discovery of a new γ-ray source component, called HESS J1702-420A, that was previously hidden under the bulk emission traditionally associated with HESS J1702-420. This new object has a power-law spectral slope < 2 and a γ-ray spectrum that, extending with no sign of curvature up to 100 TeV, makes it an excellent candidate site for the presence of PeV-energy cosmic rays. This discovery brings new information to the ongoing debate on the nature of the unidentified source HESSJ1702-420, and on the origin of Galactic cosmic rays
Search for dark matter annihilation signals from unidentified Fermi-LAT objects with H.E.S.S.
Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for very-high-energy (VHE, E 100~GeV) gamma-ray emission using H.E.S.S. observations carried out from a thorough selection of unidentified Fermi-LAT Objects (UFOs) as dark matter subhalo candidates. Provided that the dark matter mass is higher than a few hundred GeV, the emission of the UFOs can be well described by dark matter annihilation models. No significant VHE gamma-ray emission is detected in any UFO dataset nor in their combination. We, therefore, derive constraints on the product of the velocity-weighted annihilation cross-section \left by the J-factor on dark matter models describing the UFO emissions. Upper limits at 95% confidence level are derived on \left J in WW and ττ annihilation channels for the TeV dark matter particles. Focusing on thermal WIMPs, strong constraints on the J-factors are obtained from H.E.S.S. observations. Adopting model-dependent predictions from cosmological N-body simulations on the J-factor distribution function for Milky Way (MW)-sized galaxies, only 0.3 ~TeV mass dark matter models marginally allow to explain observed UFO emission
Search for enhanced TeV gamma ray emission from Giant Molecular Clouds using H.E.S.S.
Cosmic Ray (CR) interactions with the dense gas inside Giant Molecular Clouds (GMCs) produce neutral pions, which in turn decay into gamma rays. Thus, the gamma ray emission from GMCs is a direct tracer of the cosmic ray density and the matter density inside the clouds. Detection of enhanced TeV emission from GMCs, i.e., an emission significantly larger than what is expected from the average Galactic cosmic rays illuminating the cloud, can imply a variation in the local cosmic ray density, due to, for example, the presence of a recent accelerator in proximity to the cloud. Such gamma-ray observations can be crucial in probing the cosmic ray distribution across our Galaxy, but are complicated to perform with present generation Imaging Atmospheric Cherenkov Telescopes (IACTs). These studies require differentiating between the strong cosmic-ray induced background, the large scale diffuse emission, and the emission from the clouds, which is difficult to the small field of view of present generation IACTs. In this contribution, we use H.E.S.S. data collected over 16 years to search for TeV emission from GMCs in the inner molecular galacto-centric ring of our Galaxy. We implement a 3D FoV likelihood technique, and simultaneously model the hadronic background, the galactic diffuse emission and the emission expected from known VHE sources to probe for excess TeV gamma ray emission from GMCs
Is PKS 0625-354 another variable TeV active galactic nucleus?
The majority of the active galactic nuclei (AGN) detected at very-high-energies above 100 GeV belong to the class of blazars with a small angle between the jet-axis and the line-of-sight. Only about 10 percent of the gamma-ray AGN are objects with a larger viewing angle resulting in a smaller Doppler boosting of the emission. Originally, it was believed that gamma-ray emission can only be observed from blazars and those are variable in its brightness. Instead, the last years have shown that non-blazar active galaxies also show a fascinating variability behaviour which provide important new insights into the physical processes responsible for the gamma-ray production and especially for flaring events. Here, we report on the observation of gamma-ray variability of the active galaxy PKS 0625−354 detected with the H.E.S.S. telescopes in November 2018. The classification of PKS 0625−354 is a still matter of debate. The H.E.S.S. measurements were performed as part of a flux observing program and showed in the first night of the observation a detection of the object with > 5σ. A denser observation campaign followed for the next nine nights resulting in a decrease of the gamma-ray flux. Those observations were accompanied with Swift in the X-ray and UV/optical band allowing for the reconstruction of a multi-band broad-band spectral energy distribution. We will discuss the implications of the gamma-ray variability of the object
- …