79 research outputs found

    The Lifecycles of Apps in a Social Ecosystem

    Full text link
    Apps are emerging as an important form of on-line content, and they combine aspects of Web usage in interesting ways --- they exhibit a rich temporal structure of user adoption and long-term engagement, and they exist in a broader social ecosystem that helps drive these patterns of adoption and engagement. It has been difficult, however, to study apps in their natural setting since this requires a simultaneous analysis of a large set of popular apps and the underlying social network they inhabit. In this work we address this challenge through an analysis of the collection of apps on Facebook Login, developing a novel framework for analyzing both temporal and social properties. At the temporal level, we develop a retention model that represents a user's tendency to return to an app using a very small parameter set. At the social level, we organize the space of apps along two fundamental axes --- popularity and sociality --- and we show how a user's probability of adopting an app depends both on properties of the local network structure and on the match between the user's attributes, his or her friends' attributes, and the dominant attributes within the app's user population. We also develop models that show the importance of different feature sets with strong performance in predicting app success.Comment: 11 pages, 10 figures, 3 tables, International World Wide Web Conferenc

    Phage Encoded H-NS: A Potential Achilles Heel in the Bacterial Defence System

    Get PDF
    The relationship between phage and their microbial hosts is difficult to elucidate in complex natural ecosystems. Engineered systems performing enhanced biological phosphorus removal (EBPR), offer stable, lower complexity communities for studying phage-host interactions. Here, metagenomic data from an EBPR reactor dominated by Candidatus Accumulibacter phosphatis (CAP), led to the recovery of three complete and six partial phage genomes. Heat-stable nucleoid structuring (H-NS) protein, a global transcriptional repressor in bacteria, was identified in one of the complete phage genomes (EPV1), and was most similar to a homolog in CAP. We infer that EPV1 is a CAP-specific phage and has the potential to repress up to 6% of host genes based on the presence of putative H-NS binding sites in the CAP genome. These genes include CRISPR associated proteins and a Type III restriction-modification system, which are key host defense mechanisms against phage infection. Further, EPV1 was the only member of the phage community found in an EBPR microbial metagenome collected seven months prior. We propose that EPV1 laterally acquired H-NS from CAP providing it with a means to reduce bacterial defenses, a selective advantage over other phage in the EBPR system. Phage encoded H-NS could constitute a previously unrecognized weapon in the phage-host arms race

    A Multi-Scale Residential Areas Matching Method Considering Spatial Neighborhood Features

    No full text
    Residential areas is one of the basic geographical elements on the map and an important content of the map representation. Multi-scale residential areas matching refers to the process of identifying and associating entities with the same name in different data sources, which can be widely used in map compilation, data fusion, change detection and update. A matching method considering spatial neighborhood features is proposed to solve the complex matching problem of multi-scale residential areas. The method uses Delaunay triangulation to divide complex matching entities in different scales into closed domains through spatial neighborhood clusters, which can obtain many-to-many matching candidate feature sets. At the same time, the geometric features and topological features of the residential areas are fully considered, and the Relief-F algorithm is used to determine the weight values of different similarity features. Then the similarity and spatial neighborhood similarity of the polygon residential areas are calculated, after which the final matching results are obtained. The experimental results show that the accuracy rate, recall rate and F value of the matching method are all above 90%, which has a high matching accuracy. It can identify a variety of matching relationships and overcome the influence of certain positional deviations on matching results. The proposed method can not only take account of the spatial neighborhood characteristics of residential areas, but also identify complex matching relationships in multi-scale residential areas accurately with a good matching effect

    Upper Ocean Thermal Responses to Sea Spray Mediated Turbulent Fluxes during Typhoon Passage

    Get PDF
    A one-dimensional turbulent model is used to investigate the effect of sea spray mediated turbulent fluxes on upper ocean temperature during the passage of typhoon Yagi over the Kuroshio Extension area in 2006. Both a macroscopical sea spray momentum flux algorithm and a microphysical heat and moisture flux algorithm are included in this turbulent model. Numerical results show that the model can well reproduce the upper ocean temperature, which is consistent with the data from the Kuroshio Extension Observatory. Besides, the sea surface temperature is decreased by about 0.5°C during the typhoon passage, which also agrees with the sea surface temperature dataset derived from Advanced Microwave Scanning Radiometer for the Earth Observing and Reynolds. Diagnostic analysis indicates that sea spray acts as an additional source of the air-sea turbulent fluxes and plays a key role in increasing the turbulent kinetic energy in the upper ocean, which enhances the temperature diffusion there. Therefore, sea spray is also an important factor in determining the upper mixed layer depth during the typhoon passage

    Expanding the phenotype of STRA6‐related disorder to include left ventricular non‐compaction

    No full text
    Abstract Background Syndromic microphthalmia‐9 (MCOPS9) is a rare autosomal recessive disorder caused by mutations in STRA6, an important regulator of vitamin A and retinoic acid metabolism. This disorder is characterized by bilateral clinical anophthalmia, pulmonary hypoplasia/aplasia, cardiac malformations, and diaphragmatic defects. The clinical characteristics of this disorder have not been fully determined because of the rarity of clinical reports. Methods A comprehensive genotyping examination including copy number variation sequencing (CNV‐Seq) and whole‐exome sequencing (WES) was applied to a fetus of Han Chinese with bilateral anophthalmia, bilateral pulmonary agenesis, interrupted aortic arch type A, and left ventricular non‐compaction (LVNC). Results No aneuploidy or pathogenic CNV were identified by CNV‐seq. WES analysis revealed a previously reported homozygous splice site (NM_022369.4:c.113+3_113+4del) in the STRA6 gene. This variant was confirmed by Sanger sequencing. The diagnosis of MCOPS9 was confirmed given the identification of the STRA6 mutation and the association of bilateral anophthalmia, pulmonary agenesis, and cardiac malformations. Conclusion This case adds to the phenotypic spectrum of MCOPS9, supporting the association with LVNC, and the presence of interruption of aortic arch further demonstrates the variability of the cardiac malformations

    Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer

    Get PDF
    The aim of this research was to evaluate doxorubicin (DOX)-loaded zein in situ gels, a new drug delivery system in which a liquid state drug can be transformed into semi-solid after intratumoral injection. In vitro release of DOX-loaded zein was investigated and the pharmacokinetics, biodistribution and therapeutic efficacy of these DOX-loaded zein formulations were investigated using BALB/c nude tumor-bearing mice. In vitro release of DOX from the gels extended up to 7 days. Efficient accumulation of DOX in the tumor with lower drug concentration in blood and normal organs was obtained resulting in effective inhibition of tumor growth and fewer off-target side effects. In conclusion, a DOX-loaded in situ gel was developed with sustained release, enhanced anti-cancer efficacy for colorectal cancer in vivo, and especially with reduced off-target side effects

    Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.).

    Full text link
    MAIN CONCLUSION: A novel tobacco mutant library was constructed, screened, and characterized as a crucial genetic resource for functional genomics and applied research. A comprehensive mutant library is a fundamental resource for investigating gene functions, especially after the completion of genome sequencing. A new tobacco mutant population induced by ethyl methane sulfonate mutagenesis was developed for functional genomics applications. We isolated 1607 mutant lines and 8610 mutant plants with altered morphological phenotypes from 5513 independent M2 families that consisted of 69,531 M2 plants. The 2196 mutations of abnormal phenotypes in the M2 putative mutants were classified into four groups with 17 major categories and 51 subcategories. More than 60% of the abnormal phenotypes observed fell within the five major categories including plant height, leaf shape, leaf surface, leaf color, and flowering time. The 465 M2 mutants exhibited multiple phenotypes, and 1054 of the 2196 mutations were pleiotropic. Verification of the phenotypes in advanced generations indicated that 70.63% of the M3 lines, 84.87% of the M4 lines, and 95.75% of the M5 lines could transmit original mutant phenotypes of the corresponding M2, M3, and M4 mutant plants. Along with the increased generation of mutants, the ratios of lines inheriting OMPs increased and lines with emerging novel mutant phenotypes decreased. Genetic analyses of 18 stably heritable mutants showed that two mutants were double recessive, five were monogenic recessive, eight presented monogenic dominant inheritance, and three presented semi-dominant inheritance. The pleiotropy pattern, saturability evaluation, research prospects of genome, and phenome of the mutant populations were also discussed. Simultaneously, this novel mutant library provided a fundamental resource for investigating gene functions in tobacco

    Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation

    No full text
    Abstract Background Heme is an iron/porphyrin complex compound, widely used in the health care, food, and pharmaceutical industries. It is more advantageous and attractive to develop microbial cell factories to produce heme by fermentation, with lower production costs and environmentally more friendly procedures than those of the traditional extraction based on animal blood. In this study, Bacillus subtilis, a typical industrial model microorganism of food safety grade, was used for the first time as the host to synthesize heme. Results The heme biosynthetic pathway was engineered as four modules, the endogenous C5 pathway, the heterologous C4 pathway, the uroporphyrinogen (urogen) III synthesis pathway, and the downstream synthesis pathway. Knockout of hemX encoding the negative effector of the concentration of HemA, overexpression of hemA encoding glutamyl-tRNA reductase, and knockout of rocG encoding the major glutamate dehydrogenase in the C5 pathway, resulted in an increase of 427% in heme production. Introduction of the heterologous C4 pathway showed a negligible effect on heme biosynthesis. Overexpression of hemCDB, which encoded hydroxymethylbilane synthase, urogen III synthase, and porphobilinogen synthase participating in the urogen III synthesis pathway, increased heme production by 39%. Knockouts of uroporphyrinogen methyltransferase gene nasF and both heme monooxygenase genes hmoA and hmoB in the downstream synthesis pathway increased heme production by 52%. The engineered B. subtilis produced 248.26 ± 6.97 mg/L of total heme with 221.83 ± 4.71 mg/L of extracellular heme during the fed-batch fermentation in 10 L fermenter. Conclusions Strengthening endogenous C5 pathway, urogen III synthesis pathway and downstream synthesis pathway promoted the biosynthesis of heme in B. subtilis. The engineered B. subtilis strain has great potential as a microbial cell factory for efficient industrial heme production
    corecore