86 research outputs found

    Clinical efficacy of combined use of Xuebijing and mild hypothermia therapy for the treatment of severe traumatic brain injury, and its effect on patient mortality and complications

    Get PDF
    Purpose: To investigate the clinical efficacy of combined use of Xuebijing and mild hypothermia therapy in severe traumatic brain injury (TBI), and its effect on mortality and incidence of complications. Methods: Eighty-six severe TBI patients admitted to The Fourth People's Hospital of Chongqing were selected. Patients were randomly and equally assigned to control group (COG) who received conventional treatment, and study group (EXG) given a combination of Xuebijing and mild hypothermia therapy. Relevant clinical indicators and therapeutic effects were compared. Results: Post-treatment levels of inflammatory indices, including procalcitonin (PCT), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly reduced, with lower levels in EXG (p < 0.05). Between-group differences were seen in human leukocyte antigen-DR isotype (HLA-DR), CD3+, CD4+, CD8+, and C3 indicators (p < 0.05). EXG had significantly lower protein expression levels of neuron-specific enolase (NSE) and S100 beta than COG (p < 0.05). After treatment, plasma protein levels of coagulation indices, viz, prothrombin time (PT) and activated partial thromboplastin time (APTT) were lower than pre-treatment levels, with even much lower levels in EXG (p < 0.05). There were reduced incidence of lung infection, acute gastrointestinal injury, acute respiratory distress syndrome (ARDS) and hypernatremia (p < 0.05). More patients had better recovery in EXG (p < 0.05) than in control group. Conclusion: The combined therapy improves the prognosis of severe TBI, lowers the levels of inflammatory factors, ameliorates plasma coagulation, and enhances immunity with a high degree of safety. However, further clinical trials should be undertaken prior to application in clinical practic

    Epstein-barr virus-encoded microRNA-BART18-3p promotes colorectal cancer progression by targeting de novo lipogenesis

    Get PDF
    The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC

    Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice

    Get PDF
    Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene ÎČ-cyclase (ÎČ-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice

    The impact of type 2 diabetes and its management on the prognosis of patients with severe COVID‐19

    Get PDF
    Background Although type 2 diabetes mellitus (T2DM) patients with coronavirus disease 2019 (COVID‐19) develop a more severe condition compared to those without diabetes, the mechanisms for this are unknown. Moreover, the impact of treatment with antihyperglycemic drugs and glucocorticoids is unclear. Methods From 1584 COVID‐19 patients, 364 severe/critical COVID‐19 patients with clinical outcome were enrolled for the final analysis, and patients without preexisting T2DM but elevated glucose levels were excluded. Epidemiological data were obtained and clinical status evaluation carried out to assess the impact of T2DM and its management on clinical outcomes. Results Of 364 enrolled severe COVID‐19 inpatients, 114 (31.3%) had a history of T2DM. Twenty‐seven (23.7%) T2DM patients died, who had more severe inflammation, coagulation activation, myocardia injury, hepatic injury, and kidney injury compared with non‐DM patients. In severe COVID‐19 patients with T2DM, we demonstrated a higher risk of all‐cause fatality with glucocorticoid treatment (adjusted hazard ratio [HR], 3.61; 95% CI, 1.14‐11.46; P = .029) and severe hyperglycemia (fasting plasma glucose ≄11.1 mmol/L; adjusted HR, 11.86; 95% CI, 1.21‐116.44; P = .034). Conclusions T2DM status aggravated the clinical condition of COVID‐19 patients and increased their critical illness risk. Poor fasting blood glucose (≄ 11.1 mmol/L) and glucocorticoid treatment are associated with poor prognosis for T2DM patients with severe COVID‐19

    Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE

    Get PDF
    BackgroundTuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and remains a major health threat worldwide. However, a detailed understanding of the immune cells and inflammatory mediators in Mtb-infected tissues is still lacking. Tuberculous pleural effusion (TPE), which is characterized by an influx of immune cells to the pleural space, is thus a suitable platform for dissecting complex tissue responses to Mtb infection.MethodsWe employed singe-cell RNA sequencing to 10 pleural fluid (PF) samples from 6 patients with TPE and 4 non-TPEs including 2 samples from patients with TSPE (transudative pleural effusion) and 2 samples with MPE (malignant pleural effusion).ResultCompared to TSPE and MPE, TPE displayed obvious difference in the abundance of major cell types (e.g., NK, CD4+T, Macrophages), which showed notable associations with disease type. Further analyses revealed that the CD4 lymphocyte population in TPE favored a Th1 and Th17 response. Tumor necrosis factors (TNF)-, and XIAP related factor 1 (XAF1)-pathways induced T cell apoptosis in patients with TPE. Immune exhaustion in NK cells was an important feature in TPE. Myeloid cells in TPE displayed stronger functional capacity for phagocytosis, antigen presentation and IFN-Îł response, than TSPE and MPE. Systemic elevation of inflammatory response genes and pro-inflammatory cytokines were mainly driven by macrophages in patients with TPE.ConclusionWe provide a tissue immune landscape of PF immune cells, and revealed a distinct local immune response in TPE and non-TPE (TSPE and MPE). These findings will improve our understanding of local TB immunopathogenesis and provide potential targets for TB therapy

    Energy absorption of variable stiffness composite thin-walled tubes on axial impacting

    Full text link
    In order to realize the engineering application of automated fiber placement for composite laminates, a method of the variable angle fiber placement was proposed to design the tube structures of variable stiffness composites based on the quadratic Bezier curve. The axial crushing responses were simulated to investigate the energy absorption characteristics of composite tubes. The results showed that the method of the variable angle fiber placement contributed to the improvement of the energy absorption effects. The maximum crushing force efficiency of the variable stiffness composite thin-walled tubes designed by the method was 49.04% which was 106.48% higher than the constant stiffness composite tube. The results could be helpful for the process of automated fiber placement and the design of the energy absorption for composite thin-walled structures
    • 

    corecore