108 research outputs found

    Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duck enteritis virus (DEV) infection causes substantial economic losses to the worldwide duck-producing areas. The monitoring of DEV-specific antibodies is a key to evaluate the effect of DEV vaccine and develop rational immunization programs. Thus, in this study, an immunochromatographic strip (ICS) test was developed for detecting DEV serum antibodies.</p> <p>Results</p> <p>The ICS test is based on membrane chromatography, and uses both the purified recombinant UL51 protein conjugated with colloidal gold and goat anti-rabbit IgG conjugated with colloidal gold as tracers, the purified recombinant UL51 protein as the capture reagent at the test line, and rabbit IgG as the capture reagent at the control line. The specificity of the ICS was evaluated by sera against DEV, Duck hepatitis virus (DHV), Riemerella anatipestifer (RA), Duck E. coli, Muscovy duck parvovirus (MPV), or Duck Influenza viruses (DIV). Only sera against DEV showed the strong positive results. In order to determine the sensitivity of the ICS, anti-DEV serum diluted serially was tested, and the minimum detection limit of 1:128 was obtained. The ICS components, which are provided in a sealed package, require no refrigeration and are stable for 12 months. To evaluate the effect of the ICS, 110 duck serum samples collected from several non-immune duck flocks were simultaneously tested by the ICS test, enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). The results showed that the sensitivity of the ICS test was almost consistent with ELISA and much higher than NT, has low cost, and is rapid (15 min) and easy to perform with no requirement of specialized equipment, reagent or technicians.</p> <p>Conclusions</p> <p>In this work, we successfully developed a simple and rapid ICS test for detecting DEV serum antibodies for the first time. The ICS test was high specific and sensitive for the rapid detection of anti-DEV antibodies, and has great potential to be used for the serological surveillance of DEV infection in the field.</p

    Detection of anatid herpesvirus 1 gC gene by TaqMan™ fluorescent quantitative real-time PCR with specific primers and probe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anatid herpesvirus 1 (AHV-1) is known for the difficulty of monitoring and controlling, because it has a long period of asymptomatic carrier state in waterfowls. Furthermore, as a significant essential agent for viral attachment, release, stability and virulence, <it>gC </it>(<it>UL44</it>) gene and its protein product (glycoprotein C) may play a key role in the epidemiological screening. The objectives of this study were to rapidly, sensitively, quantitatively detect <it>gC </it>gene of AHV-1 and provide the underlying basis for further investigating pcDNA3.1-gC DNA vaccine in infected ducks by TaqMan™ fluorescent quantitative real-time PCR assay (FQ-PCR) with pcDNA3.1-gC plasmid.</p> <p>Results</p> <p>The repeatable and reproducible quantitative assay was established by the standard curve with a wide dynamic range (eight logarithmic units of concentration) and very good correlation values (1.000). This protocol was able to detect as little as 1.0 × 10<sup>1 </sup>DNA copies per reaction and it was highly specific to AHV-1. The TaqMan™ FQ-PCR assay successfully detected the <it>gC </it>gene in tissue samples from pcDNA3.1-gC and AHV-1 attenuated vaccine (AHV-1 Cha) strain inoculated ducks respectively.</p> <p>Conclusions</p> <p>The assay offers an attractive method for the detection of AHV-1, the investigation of distribution pattern of AHV-1 in vivo and molecular epidemiological screening. Meanwhile, this method could expedite related AHV-1 and gC DNA vaccine research.</p

    A low-cost collaborative location scheme with GNSS and RFID for the Internet of Things

    Get PDF
    The emergence and development of the Internet of Things (IoT) has attracted growing attention to low-cost location systems when facing the dramatically increased number of public infrastructure assets in smart cities. Various radio frequency identification (RFID)-based locating systems have been developed. However, most of them are impractical for infrastructure asset inspection and management on a large scale due to their high cost, inefficient deployment, and complex environments such as emergencies or high-rise buildings. In this paper, we proposed a novel locating system by combing the Global Navigation Satellite System (GNSS) with RFID, in which a target tag was located with one RFID reader and one GNSS receiver with sufficient accuracy for infrastructure asset management. To overcome the cost challenge, one mobile RFID reader-mounted GNSS receiver is used to simulate multiple location known reference tags. A vast number of reference tags are necessary for current RFID-based locating systems, which means higher cost. To achieve fine-grained location accuracy, we utilize a distance-based power law weight algorithm to estimate the exact coordinates. Our experiment demonstrates the effectiveness and advantages of the proposed scheme with sufficient accuracy, low cost and easy deployment on a large scale. The proposed scheme has potential applications for location-based services in smart cities

    A proposed disease classification system for duck viral hepatitis

    Get PDF
    The nomenclature of duck viral hepatitis (DVH) was historically not a problem. However, 14 hepatotropic viruses among 10 different genera are associated with the same disease name, DVH. Therefore, the disease name increasingly lacks clarity and may no longer fit the scientific description of the disease. Because one disease should not be attributed to 10 genera of viruses, this almost certainly causes misunderstanding regarding the disease-virus relationship. Herein, we revisited the problem and proposed an update to DVH disease classification. This classification is based on the nomenclature of human viral hepatitis and the key principle of Koch's postulates (“one microbe and one disease”). In total, 10 types of disease names have been proposed. These names were literately matched with hepatitis-related viruses. We envision that this intuitive nomenclature system will facilitate scientific communication and consistent interpretation in this field, especially in the Asian veterinary community, where these diseases are most commonly reported

    Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence

    Get PDF
    Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection

    Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    No full text
    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized

    Study on the Evolution Pattern of the Aromatics of Lignin during Hydrothermal Carbonization

    No full text
    Waste straw contains a large amount of lignin, and its resource utilization is not only in line with the national double carbon development strategy, but also to alleviate environmental pollution. Hydrothermal carbonization is a new thermochemical conversion technology, which has attracted much attention because it can directly transform carbon containing waste raw materials with high moisture content and low energy density. To investigate the physicochemical properties and aromatization changes of lignin hydrochar, hydrothermal carbonization experiments were carried out at 290 &deg;C and a solid&ndash;liquid ratio of 1:20 for 0.00, 0.25, 0.50, 1.00, 1.50, 2.00, 4.00, 8.00 h, respectively. The experimental results shows that hydrothermal carbonization can increase the combustion quality of lignin. Physical and chemical properties analysis shows that with the increase of hydrothermal carbonization time from 0 to 2 h, the hydrochar content increased from 21.21% to 26.02% and the HHV of hydrochar increased from 20.01 MJ/Kg to 26.32 MJ/Kg. When the holding time exceeded 2 h, the carbon content and calorific value of hydrothermal tended to be stable. With the increase of holding time, FTIR analysis and XRD analysis show that the free hydroxyl groups in water-soluble lignin were easily combined with intramolecular and intermolecular hydrogen bonds, thus forming an ordered crystal arrangement. Subsequently, the crystal structure formed a well-arranged long chain through a strong hydrogen bond network, forming a ring structure in the process of aromatization. Aromatic ring structure accumulated, aromatization wave peak increased with holding time and aromatization intensified. Hydrochar crystal particles became larger and arranged in order. At the same time, the surface functional group detection and degree of crystallization were almost unchanged when holding time exceeded 2 h. The surface morphology of hydrochar was observed by SEM as follows: when the hydrothermal carbonization reaction of lignin entered the insulation stage, the microsphere structure began to aggregate and then became larger. When the holding time reached 2 h, the growth rate of carbon microspheres noticeably slowed. Therefore, the optimal hydrothermal carbonization time of lignin is 2 h, and hydrochar fuel has the best performance and aromatization

    Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA]

    No full text
    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database
    corecore